当前位置:
X-MOL 学术
›
Annu. Rev. Clin. Psychol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Machine Learning and the Digital Measurement of Psychological Health
Annual Review of Clinical Psychology ( IF 17.8 ) Pub Date : 2023-05-09 , DOI: 10.1146/annurev-clinpsy-080921-073212 Isaac R Galatzer-Levy 1, 2 , Jukka-Pekka Onnela 3
Annual Review of Clinical Psychology ( IF 17.8 ) Pub Date : 2023-05-09 , DOI: 10.1146/annurev-clinpsy-080921-073212 Isaac R Galatzer-Levy 1, 2 , Jukka-Pekka Onnela 3
Affiliation
Since its inception, the discipline of psychology has utilized empirical epistemology and mathematical methodologies to infer psychological functioning from direct observation. As new challenges and technological opportunities emerge, scientists are once again challenged to define measurement paradigms for psychological health and illness that solve novel problems and capitalize on new technological opportunities. In this review, we discuss the theoretical foundations of and scientific advances in remote sensor technology and machine learning models as they are applied to quantify psychological functioning, draw clinical inferences, and chart new directions in treatment.
中文翻译:
机器学习和心理健康的数字测量
自成立以来,心理学学科一直利用实证认识论和数学方法从直接观察中推断心理功能。随着新挑战和技术机遇的出现,科学家们再次面临挑战,他们需要定义心理健康和疾病的测量范式,以解决新问题并利用新的技术机会。在这篇综述中,我们讨论了远程传感器技术和机器学习模型的理论基础和科学进展,因为它们被应用于量化心理功能、得出临床推论和规划新的治疗方向。
更新日期:2023-05-09
中文翻译:
机器学习和心理健康的数字测量
自成立以来,心理学学科一直利用实证认识论和数学方法从直接观察中推断心理功能。随着新挑战和技术机遇的出现,科学家们再次面临挑战,他们需要定义心理健康和疾病的测量范式,以解决新问题并利用新的技术机会。在这篇综述中,我们讨论了远程传感器技术和机器学习模型的理论基础和科学进展,因为它们被应用于量化心理功能、得出临床推论和规划新的治疗方向。