Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2023-05-09 , DOI: 10.1016/j.jcis.2023.05.011 Xuqian Zhang 1 , Jiming Liu 1 , Rui Li 1 , Xuan Jian 2 , Xiaoming Gao 3 , Zhongli Lu 1 , Xiuping Yue 1
Electrocatalysis has emerged as one of the most promising alternatives to conventional anthraquinone for preparing hydrogen peroxide (H2O2) with high energy consumption and pollution because of its simplicity, convenience, and environmental friendliness. However, the oxygen reduction reaction (ORR) generating H2O2 via the 2e- path is a competitive path for 4e–ORR to generate H2O. Therefore, it is crucial to identify an electrocatalyst with high selectivity and activity of 2e-ORR. Here, we established five machine learning (ML) models based on the adsorption free energy of O* (△G (O*)) of 149 single-atom catalysts (SACs) collected and the limiting potential (UL) of 31 SACs calculated using density functional theory (DFT) from the literature. We then obtained descriptors that could accurately describe SACs. Furthermore, 690 unknown SACs’ 2e-ORR catalytic performance was well predicted. Four 2e-ORR materials with high selectivity and activity were screened: Zn@Pc-N3C1, Au@Pd-N4, Au@Pd-N1C3, and Au@Py-N3C1. We verified the UL of these SACs through DFT calculation, which was higher than the standard value, proving the ML model’s validity. The ML-based method to predict the material properties with highly selective and active electrocatalysts provides an efficient, rapid, and low-cost method for discovering and designing more valuable SACs catalysts.
中文翻译:
用于双电子氧还原反应的高性能单原子电催化剂的机器学习筛选
电催化因其简单、方便和环境友好等优点,已成为传统蒽醌制备过氧化氢(H 2 O 2)最有前途的替代方法之一,具有高能耗和高污染的特点。然而,通过2e -路径生成H 2 O 2 的氧还原反应(ORR)是4e - ORR生成H 2 O的竞争路径。因此,寻找具有2e -高选择性和活性的电催化剂至关重要。 ORR。在这里,我们基于收集的 149 个单原子催化剂 (SAC) 的 O* (△G (O*)) 吸附自由能和计算的 31 个 SAC 的极限电位 (U L ) 建立了五个机器学习 (ML) 模型使用文献中的密度泛函理论 (DFT)。然后我们获得了可以准确描述 SAC 的描述符。此外,还很好地预测了 690 个未知 SAC 的 2e - ORR 催化性能。筛选出四种具有高选择性和活性的2e - ORR材料:Zn@Pc-N 3 C 1、Au@Pd-N 4、Au@Pd-N 1 C 3和Au@Py-N 3 C 1。我们验证了 U L通过 DFT 计算得出的这些 SAC 高于标准值,证明了 ML 模型的有效性。基于 ML 的方法用高选择性和活性电催化剂预测材料特性,为发现和设计更有价值的 SAC 催化剂提供了一种高效、快速和低成本的方法。