当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Li-La-Zr-O Garnets with High Li-Ion Conductivity and Air-Stability by Microstructure-Engineering
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-05-08 , DOI: 10.1002/adfm.202303397 Mohammad Nasir 1 , Ji Young Park 2 , Pilwon Heo 2 , Kyoung Hwan Choi 2 , Hee Jung Park 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-05-08 , DOI: 10.1002/adfm.202303397 Mohammad Nasir 1 , Ji Young Park 2 , Pilwon Heo 2 , Kyoung Hwan Choi 2 , Hee Jung Park 1
Affiliation
Li7La3Zr2O12 (LLZO) solid electrolyte (SE) is a potential candidate for developing safe and economically all-solid-state batteries (ASSBs) owing to its high Li-ion conductivity and electrochemical stability against lithium anodes. However, poor stability and significant reduction in conductivity when exposed to air, limit its practical use. Herein, a unique two-step sintering approach is designed to tailor the microstructure of LLZO that can withstand extended air exposure. The record high Li-ion conductivity (≈1.7 mS cm−1 at 25 °C) is obtained for coarse-grained Li6.25Ga0.25La3Zr2O12 (GLLZO) samples, whereas fine-grained samples exhibit a relatively lower yet still substantial conductivity (≈1.3 mS cm−1). However, coarse-grained samples are vulnerable to atmospheric attacks, forming larger Li2CO3 on the surface, leading to spontaneous cracking and significantly reduced conductivity (≈4 order). Despite these limitations, coarse-grained samples can still be good SE for ASSBs under certain conditions. Interestingly, fine-grained samples maintain structural integrity and Li-ion conductivity even after prolonged exposure to air. The differing transport and stability behaviors are attributed to variations in the bulk compositions originating from distinct sintering mechanisms. These findings represent a significant step toward achieving air-stable, highly conductive solid electrolytes with normal grain growth that will reduce interfacial resistance and improve the power density and cyclability of next-generation ASSBs.
中文翻译:
通过微结构工程研究具有高锂离子电导率和空气稳定性的Li-La-Zr-O石榴石
Li 7 La 3 Zr 2 O 12 (LLZO)固体电解质(SE)因其高锂离子电导率和对锂阳极的电化学稳定性而成为开发安全且经济的全固态电池(ASSB)的潜在候选者。然而,稳定性较差,暴露在空气中时电导率显着降低,限制了其实际应用。在此,设计了一种独特的两步烧结方法来调整 LLZO 的微观结构,使其能够承受长时间的空气暴露。粗粒Li 6.25 Ga 0.25 La 3 Zr 2 O 12获得了创纪录的高锂离子电导率(25 °C 时约1.7 mS cm -1 )(GLLZO) 样品,而细粒样品表现出相对较低但仍然相当大的电导率 (≈1.3 mS cm -1 )。然而,粗粒样品容易受到大气的攻击,形成较大的Li 2 CO 3表面,导致自发裂纹并显着降低电导率(≈4 级)。尽管有这些限制,在某些条件下,粗粒度样本对于 ASSB 仍然是很好的 SE。有趣的是,即使长时间暴露在空气中,细粒样品仍能保持结构完整性和锂离子电导率。不同的传输和稳定性行为归因于源自不同烧结机制的本体成分的变化。这些发现代表着朝着实现具有正常晶粒生长的空气稳定、高导电性固体电解质迈出了重要一步,这将降低界面电阻并提高下一代 ASSB 的功率密度和可循环性。
更新日期:2023-05-08
中文翻译:
通过微结构工程研究具有高锂离子电导率和空气稳定性的Li-La-Zr-O石榴石
Li 7 La 3 Zr 2 O 12 (LLZO)固体电解质(SE)因其高锂离子电导率和对锂阳极的电化学稳定性而成为开发安全且经济的全固态电池(ASSB)的潜在候选者。然而,稳定性较差,暴露在空气中时电导率显着降低,限制了其实际应用。在此,设计了一种独特的两步烧结方法来调整 LLZO 的微观结构,使其能够承受长时间的空气暴露。粗粒Li 6.25 Ga 0.25 La 3 Zr 2 O 12获得了创纪录的高锂离子电导率(25 °C 时约1.7 mS cm -1 )(GLLZO) 样品,而细粒样品表现出相对较低但仍然相当大的电导率 (≈1.3 mS cm -1 )。然而,粗粒样品容易受到大气的攻击,形成较大的Li 2 CO 3表面,导致自发裂纹并显着降低电导率(≈4 级)。尽管有这些限制,在某些条件下,粗粒度样本对于 ASSB 仍然是很好的 SE。有趣的是,即使长时间暴露在空气中,细粒样品仍能保持结构完整性和锂离子电导率。不同的传输和稳定性行为归因于源自不同烧结机制的本体成分的变化。这些发现代表着朝着实现具有正常晶粒生长的空气稳定、高导电性固体电解质迈出了重要一步,这将降低界面电阻并提高下一代 ASSB 的功率密度和可循环性。