Applied Surface Science ( IF 6.3 ) Pub Date : 2023-05-06 , DOI: 10.1016/j.apsusc.2023.157456 Dasol Bae , Minkyu Kim
The catalytic oxidative dehydrogenation of alkane can be an attractive way to produce olefines from light alkanes which are major components of natural gas. This study examined C2H6 oxidation on a stochiometric IrO2(1 1 0) surface, which has a high potential to produce C2H4 production at a low temperature of ∼ 400 K using density functional theory calculation and microkinetic simulation. The DFT simulation predicted two main complete oxidation mechanisms of dehydrogenation-based oxidation and C2HxO formation-based oxidation. With DFT-derived energetic data, microkinetic simulation for C2H6 oxidation was performed on stochiometric IrO2(1 1 0) TPRS spectra. The simulation confirmed that C2H6 oxidation during TPRS mainly follows the dehydrogenation-based complete oxidations (C2H6 → C2H5 → C2H4 → C2H3 → C2H2 → C2H → C2 → C2O → CO + C). In addition, the production of C2H4(g) stems from the cooperative steps of CH bond recombination from C2H3 and subsequent desorption. The computational findings cannot be produced without the proposed concept of a surface diffusion-limited reaction, which can resolve the errors of overestimated rates by the mean field approach. This finding suggests that the diffusion kinetics can be critical for understanding the TPRS features when simulating TPRS spectra by mean field-based microkinetic simulation. Our results provide a solid understanding of C2H6 oxidation and C2H4 production mechanisms on sIrO2(1 1 0).
中文翻译:
对化学计量 IrO2(1 1 0) 表面 C2H6 氧化生成 C2H4 的基本理解
烷烃的催化氧化脱氢可能是从作为天然气主要成分的轻质烷烃生产烯烃的有吸引力的方法。本研究使用密度泛函理论计算和微观动力学模拟检查了化学计量 IrO 2 (1 1 0) 表面上的C 2 H 6氧化,该表面具有在 ∼ 400 K 的低温下产生C 2 H 4的高潜力。DFT 模拟预测了基于脱氢的氧化和基于 C 2 H x O 形成的氧化的两种主要完整氧化机制。使用 DFT 导出的能量数据,C 2 H 6的微观动力学模拟 在化学计量 IrO 2 (1 1 0) TPRS 光谱上进行氧化。模拟证实,TPRS过程中C 2 H 6氧化主要遵循基于脱氢的完全氧化(C 2 H 6 → C 2 H 5 → C 2 H 4 → C 2 H 3 → C 2 H 2 → C 2 H → C 2 → C 2 O → CO + C)。此外,C 2 H 4 (g) 的产生源于 C 的协同步骤来自 C 2 H 3的 H 键重组和随后的解吸。如果没有提出的表面扩散限制反应的概念,就无法产生计算结果,这可以解决平均场方法高估速率的错误。这一发现表明,在通过基于平均场的微观动力学模拟来模拟 TPRS 光谱时,扩散动力学对于理解 TPRS 特征至关重要。我们的结果提供了对sIrO 2 (1 1 0)上的 C 2 H 6氧化和 C 2 H 4生成机制的深入理解。