当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineered repeat proteins as scaffolds to assemble multi-enzyme systems for efficient cell-free biosynthesis
Nature Communications ( IF 14.7 ) Pub Date : 2023-05-04 , DOI: 10.1038/s41467-023-38304-z
Alba Ledesma-Fernandez 1 , Susana Velasco-Lozano 1, 2, 3 , Javier Santiago-Arcos 1 , Fernando López-Gallego 1, 4 , Aitziber L Cortajarena 1, 4
Affiliation  

Multi-enzymatic cascades with enzymes arranged in close-proximity through a protein scaffold can trigger a substrate channeling effect, allowing for efficient cofactor reuse with industrial potential. However, precise nanometric organization of enzymes challenges the design of scaffolds. In this study, we create a nanometrically organized multi-enzymatic system exploiting engineered Tetrapeptide Repeat Affinity Proteins (TRAPs) as scaffolding for biocatalysis. We genetically fuse TRAP domains and program them to selectively and orthogonally recognize peptide-tags fused to enzymes, which upon binding form spatially organized metabolomes. In addition, the scaffold encodes binding sites to selectively and reversibly sequester reaction intermediates like cofactors via electrostatic interactions, increasing their local concentration and, consequently, the catalytic efficiency. This concept is demonstrated for the biosynthesis of amino acids and amines using up to three enzymes. Scaffolded multi-enzyme systems present up to 5-fold higher specific productivity than the non-scaffolded ones. In-depth analysis suggests that channeling of NADH cofactor between the assembled enzymes enhances the overall cascade throughput and the product yield. Moreover, we immobilize this biomolecular scaffold on solid supports, creating reusable heterogeneous multi-functional biocatalysts for consecutive operational batch cycles. Our results demonstrate the potential of TRAP-scaffolding systems as spatial-organizing tools to increase the efficiency of cell-free biosynthetic pathways.



中文翻译:

工程重复蛋白作为支架组装多酶系统以实现高效的无细胞生物合成

通过蛋白质支架将酶紧密排列的多酶级联可以触发底物通道效应,从而实现具有工业潜力的高效辅因子再利用。然而,酶的精确纳米组织对支架的设计提出了挑战。在这项研究中,我们创建了一个纳米级组织的多酶系统,利用工程四肽重复亲和蛋白 (TRAP) 作为生物催化的支架。我们通过基因融合 TRAP 结构域并对它们进行编程,以选择性地和正交地识别与酶融合的肽标签,这些酶在结合后形成空间组织的代谢组。此外,支架编码结合位点,通过静电相互作用选择性和可逆地螯合反应中间体,如辅助因子,增加它们的局部浓度,因此,催化效率。这个概念被证明用于使用多达三种酶的氨基酸和胺的生物合成。支架式多酶系统的比生产率比非支架式多酶系统高出 5 倍。深入分析表明,NADH 辅助因子在组装酶之间的通道提高了整体级联吞吐量和产品产量。此外,我们将这种生物分子支架固定在固体支撑物上,为连续的操作批处理周期创造可重复使用的异质多功能生物催化剂。我们的结果证明了 TRAP 支架系统作为空间组织工具以提高无细胞生物合成途径效率的潜力。支架式多酶系统的比生产率比非支架式多酶系统高出 5 倍。深入分析表明,NADH 辅助因子在组装酶之间的通道提高了整体级联吞吐量和产品产量。此外,我们将这种生物分子支架固定在固体支撑物上,为连续的操作批处理周期创造可重复使用的异质多功能生物催化剂。我们的结果证明了 TRAP 支架系统作为空间组织工具以提高无细胞生物合成途径效率的潜力。支架式多酶系统的比生产率比非支架式多酶系统高出 5 倍。深入分析表明,NADH 辅助因子在组装酶之间的通道提高了整体级联吞吐量和产品产量。此外,我们将这种生物分子支架固定在固体支撑物上,为连续的操作批处理周期创造可重复使用的异质多功能生物催化剂。我们的结果证明了 TRAP 支架系统作为空间组织工具以提高无细胞生物合成途径效率的潜力。此外,我们将这种生物分子支架固定在固体支撑物上,为连续的操作批处理周期创造可重复使用的异质多功能生物催化剂。我们的结果证明了 TRAP 支架系统作为空间组织工具以提高无细胞生物合成途径效率的潜力。此外,我们将这种生物分子支架固定在固体支撑物上,为连续的操作批处理周期创造可重复使用的异质多功能生物催化剂。我们的结果证明了 TRAP 支架系统作为空间组织工具以提高无细胞生物合成途径效率的潜力。

更新日期:2023-05-05
down
wechat
bug