当前位置:
X-MOL 学术
›
Commun. Number Theory Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
KP hierarchy for Hurwitz-type cohomological field theories
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2023-05-04 , DOI: 10.4310/cntp.2023.v17.n2.a1 Reinier Kramer 1
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2023-05-04 , DOI: 10.4310/cntp.2023.v17.n2.a1 Reinier Kramer 1
Affiliation
We generalise a result of Kazarian regarding Kadomtsev–Petviashvili integrability for single Hodge integrals to general cohomological field theories related to Hurwitz-type counting problems or hypergeometric tau‑functions. The proof uses recent results on the relations between hypergeometric tau-functions and topological recursion, as well as the DOSS correspondence between topological recursion and cohomological field theories. As a particular case, we recover the result of Alexandrov of KP integrability for triple Hodge integrals with a Calabi–Yau condition.
中文翻译:
Hurwitz 型上同调场论的 KP 层级
我们将 Kazarian 关于单个 Hodge 积分的 Kadomtsev–Petviashvili 可积性的结果推广到与 Hurwitz 型计数问题或超几何 tau 函数相关的一般上同调场论。该证明使用了超几何 tau 函数与拓扑递归之间关系的最新结果,以及拓扑递归与上同调场论之间的 DOSS 对应关系。作为一个特殊情况,我们恢复了具有 Calabi-Yau 条件的三重霍奇积分的 KP 可积性的 Alexandrov 结果。
更新日期:2023-05-05
中文翻译:
Hurwitz 型上同调场论的 KP 层级
我们将 Kazarian 关于单个 Hodge 积分的 Kadomtsev–Petviashvili 可积性的结果推广到与 Hurwitz 型计数问题或超几何 tau 函数相关的一般上同调场论。该证明使用了超几何 tau 函数与拓扑递归之间关系的最新结果,以及拓扑递归与上同调场论之间的 DOSS 对应关系。作为一个特殊情况,我们恢复了具有 Calabi-Yau 条件的三重霍奇积分的 KP 可积性的 Alexandrov 结果。