当前位置: X-MOL 学术Commun. Number Theory Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On quasi-tame Looijenga pairs
Communications in Number Theory and Physics ( IF 1.2 ) Pub Date : 2023-05-04 , DOI: 10.4310/cntp.2023.v17.n2.a3
Andrea Brini 1 , Yannik Schüler 2
Affiliation  

We prove a conjecture of Bousseau, van Garrel and the first-named author relating, under suitable positivity conditions, the higher genus maximal contact $\log$ Gromov–Witten invariants of Looijenga pairs to other curve counting invariants of Gromov–Witten/Gopakumar–Vafa type. The proof consists of a closed-form $q$-hypergeometric resummation of the quantum tropical vertex calculation of the $\log$ invariants in presence of infinite scattering. The resulting identity of $q$-series appears to be new and of independent combinatorial interest.

中文翻译:

关于准驯服的 Looijenga 对

我们证明了 Bousseau、van Garrel 和第一作者的猜想,在适当的正性条件下,Looijenga 对的较高属最大接触 $\log$ Gromov–Witten 不变量与 Gromov–Witten/Gopakumar– 的其他曲线计数不变量有关。瓦法类型。证明包括在存在无限散射的情况下 $\log$ 不变量的量子热带顶点计算的封闭形式 $q$-超几何恢复。$q$ 系列的结果身份似乎是新的并且具有独立的组合兴趣。
更新日期:2023-05-05
down
wechat
bug