Frontiers of Mechanical Engineering Pub Date : 2023-05-03 , DOI: 10.1007/s11465-022-0728-9
Kaikai Li , Longsheng Lu , Huaping Chen , Guoxiang Jiang , Huanwen Ding , Min Yu , Yingxi Xie
![]() |
Surgical electrodes rely on thermal effect of high-frequency current and are a widely used medical tool for cutting and coagulating biological tissue. However, tissue adhesion on the electrode surface and thermal injury to adjacent tissue are serious problems in surgery that can affect cutting performance. A bionic microstriped structure mimicking a banana leaf was constructed on the electrode via nanosecond laser surface texturing, followed by silanization treatment, to enhance lyophobicity. The effect of initial, simple grid-textured, and bionic electrodes with different wettabilities on tissue adhesion and thermal injury were investigated using horizontal and vertical cutting modes. Results showed that the bionic electrode with high lyophobicity can effectively reduce tissue adhesion mass and thermal injury depth/area compared with the initial electrode. The formation mechanism of adhered tissue was discussed in terms of morphological features, and the potential mechanism for antiadhesion and heat dissipation of the bionic electrode was revealed. Furthermore, we evaluated the influence of groove depth on tissue adhesion and thermal injury and then verified the antiadhesion stability of the bionic electrode. This study demonstrates a promising approach for improving the cutting performance of surgical electrodes.
中文翻译:

通过构建仿生微带结构来提高手术电极的切割性能
手术电极依靠高频电流的热效应,是一种广泛用于切割和凝固生物组织的医疗工具。然而,电极表面的组织粘附和对邻近组织的热损伤是外科手术中会影响切割性能的严重问题。通过纳秒激光表面织构在电极上构建模仿香蕉叶的仿生微带结构,然后进行硅烷化处理,以增强疏液性。使用水平和垂直切割模式研究了具有不同润湿性的初始、简单网格纹理和仿生电极对组织粘附和热损伤的影响。结果表明,与初始电极相比,具有高疏液性的仿生电极可以有效减少组织粘附质量和热损伤深度/面积。从形态特征方面探讨了粘附组织的形成机制,揭示了仿生电极抗粘连和散热的潜在机制。此外,我们评估了凹槽深度对组织粘附和热损伤的影响,然后验证了仿生电极的抗粘连稳定性。这项研究展示了一种提高手术电极切割性能的有前途的方法。我们评估了凹槽深度对组织粘附和热损伤的影响,然后验证了仿生电极的抗粘连稳定性。这项研究展示了一种提高手术电极切割性能的有前途的方法。我们评估了凹槽深度对组织粘附和热损伤的影响,然后验证了仿生电极的抗粘连稳定性。这项研究展示了一种提高手术电极切割性能的有前途的方法。