当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Overcrowded Additive in Electrolyte and Crystalline Li2CO3 Artificial Solid Electrolyte Interphase on TiNb2O7 Anode Enable Long Lifespan Aqueous Lithium-Ion Batteries
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2023-05-02 , DOI: 10.1021/acsaem.3c00529 Haoyang Zhao 1 , Jun Zhang 1, 2 , Tianqi Yang 1 , Zheyu Jin 2 , Xinping He 1, 2 , Zhongwei Wang 2 , Yang Xia 1 , Yao Wang 1 , Xinyong Tao 1 , Wenkui Zhang 1
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2023-05-02 , DOI: 10.1021/acsaem.3c00529 Haoyang Zhao 1 , Jun Zhang 1, 2 , Tianqi Yang 1 , Zheyu Jin 2 , Xinping He 1, 2 , Zhongwei Wang 2 , Yang Xia 1 , Yao Wang 1 , Xinyong Tao 1 , Wenkui Zhang 1
Affiliation
Aqueous lithium-ion batteries (ALIBs) are attracting intense attention because of the intrinsic nonflammable nature of the aqueous electrolytes. However, its own narrow electrochemical window has led to numerous problems such as dissolution of electrode materials, hydrogen evolution at the anode, and poor cycling stability. Here, we report an “overcrowded electrolyte” using 1,4-dioxane as an additive, which has lone pairs of electrons on the oxygen atom to disrupt the original water-hydrogen bonding network by forming intermolecular hydrogen bonds, thereby inhibiting the hydrogen evolution reaction (HER) and decreasing the water activity. Furthermore, a layer of crystalline Li2CO3 is coated onto the surface of the TiNb2O7 anode material by supercritical fluid CO2 technology. The dense hydrophobic Li2CO3 coating layer can serve as a physical protection, which effectively blocks the direct contact between electrolyte and electrode. Under the synergistic effect of those two aspects, HER is greatly suppressed and the interface stability is enhanced. As a result, LiMn2O4/TiNb2O7 full cells exhibit a high initial coulomb efficiency of 95% with a capacity retention rate of 92% over 500 cycles under 1 C rate. This work provides a fundamental understanding of the interfacial chemistry of ALIBs and makes an important step forward in the development of high-performance and low-cost ALIBs for practical applications.
中文翻译:
电解质中过度拥挤的添加剂和 TiNb2O7 阳极上的结晶 Li2CO3 人工固体电解质界面可实现长寿命的水性锂离子电池
水系锂离子电池 (ALIB) 由于水系电解质固有的不易燃特性而备受关注。然而,其自身较窄的电化学窗口导致电极材料溶解、负极析氢、循环稳定性差等诸多问题。在这里,我们报告了一种使用 1,4-二恶烷作为添加剂的“过度拥挤的电解质”,它在氧原子上具有孤电子对,通过形成分子间氢键来破坏原有的水氢键网络,从而抑制析氢反应(HER) 并降低水分活度。此外,一层结晶 Li 2 CO 3被涂覆到 TiNb 2 O 7的表面上负极材料采用超临界流体CO 2技术。致密的疏水Li 2 CO 3包覆层可以起到物理保护作用,有效阻断电解液与电极的直接接触。在这两个方面的协同作用下,HER 得到极大抑制,界面稳定性得到增强。结果,LiMn 2 O 4 /TiNb 2 O 7全电池表现出 95% 的高初始库仑效率,在 1 C 倍率下经过 500 次循环后容量保持率为 92%。这项工作提供了对 ALIB 界面化学的基本理解,并在开发用于实际应用的高性能和低成本 ALIB 方面迈出了重要一步。
更新日期:2023-05-02
中文翻译:
电解质中过度拥挤的添加剂和 TiNb2O7 阳极上的结晶 Li2CO3 人工固体电解质界面可实现长寿命的水性锂离子电池
水系锂离子电池 (ALIB) 由于水系电解质固有的不易燃特性而备受关注。然而,其自身较窄的电化学窗口导致电极材料溶解、负极析氢、循环稳定性差等诸多问题。在这里,我们报告了一种使用 1,4-二恶烷作为添加剂的“过度拥挤的电解质”,它在氧原子上具有孤电子对,通过形成分子间氢键来破坏原有的水氢键网络,从而抑制析氢反应(HER) 并降低水分活度。此外,一层结晶 Li 2 CO 3被涂覆到 TiNb 2 O 7的表面上负极材料采用超临界流体CO 2技术。致密的疏水Li 2 CO 3包覆层可以起到物理保护作用,有效阻断电解液与电极的直接接触。在这两个方面的协同作用下,HER 得到极大抑制,界面稳定性得到增强。结果,LiMn 2 O 4 /TiNb 2 O 7全电池表现出 95% 的高初始库仑效率,在 1 C 倍率下经过 500 次循环后容量保持率为 92%。这项工作提供了对 ALIB 界面化学的基本理解,并在开发用于实际应用的高性能和低成本 ALIB 方面迈出了重要一步。