Water Research ( IF 11.4 ) Pub Date : 2023-05-01 , DOI: 10.1016/j.watres.2023.120026 Chenyi Nie 1 , Yanghui Hou 1 , Fuyang Liu 1 , Qiqi Dong 1 , Zhengmao Li 1 , Peng Han 1 , Meiping Tong 1
Antibiotic resistance genes (ARGs) have become as emerging contaminant with great concerns worldwide due to their threats to human health. It is thus urgent to develop techniques to degrade ARGs in water. In this study, MoS2@Fe3O4 (MF) particles were fabricated and used to activate peroxymonosulfate (PMS) for the degradation of four types of free DNA bases (T, A, C, and G, major components of ARGs) and ARGs. We found that MF/PMS system could effectively degrade all four DNA bases (T within 10 min, A within 30 min, C within 5 min, and G within 5 min) in very short time. During the reaction process, MF could activate PMS to form the reactive radicals such as ·OH, SO4·−, O2·−, and 1O2, contributing to the degradation of DNA bases. Due to the low adsorption energy, high charge transfer, and great capability for PMS cleavage, MF exhibited excellent PMS adsorption and activation performances. MoS2 in MF could enhance the cycle of Fe(III)/Fe(II), improving the catalytic performance. Excellent catalytic performances of MF/PMS system were achieved in complex water matrix (including different solution pH, coexisting of anions and natural organic matter) as well as in real water samples (including tap water, river water, sea water, and sewage) especially under high salinity conditions due to the generation of Cl· radicals and HClO species. MF/PMS system could also efficiently degrade ARGs (chromosomal kanR and plasmid gmrA) and DNA extracted from antibiotic resistant bacteria (ARB) in super-short time. Moreover, complete disinfection of two types of model ARB (E. coli K-12 MG 1655 and E. coli S17–1) could also be achieved in MF/PMS system. The high degradation performances of MF/PMS system achieved in the reused experiments and the 14-day continuous flow reactor experiments indicated the stability of MF particles. Due to the magnetic property, it would be convenient to separate MF particles from water after use via using magnet, facilitating their reuse of MF and avoiding potential water contamination by catalysts. Overall, this study not only provided a deep insight on Fe/Mo-triggered PMS activation process, but also provided an effective and reliable approach for the treatment of DNA bases, ARGs, DNA, and ARB in water.
中文翻译:
磁性 MoS2@Fe3O4 有效激活过氧单硫酸盐,快速降解游离 DNA 碱基和抗生素抗性基因
抗生素抗性基因 (ARGs) 因其对人类健康的威胁而成为全球范围内备受关注的新兴污染物。因此迫切需要开发降解水中 ARGs 的技术。在这项研究中,制造了 MoS 2 @Fe 3 O 4 (MF) 颗粒并用于激活过氧单硫酸盐 (PMS) 以降解四种游离 DNA 碱基(T、A、C 和 G,ARG 的主要成分)和 ARG。我们发现 MF/PMS 系统可以在很短的时间内有效降解所有四种 DNA 碱基(T 在 10 分钟内,A 在 30 分钟内,C 在 5 分钟内,G 在 5 分钟内)。在反应过程中,MF可激活PMS,形成·OH、SO 4 ·−、O 2 ·−等活性基团,1 O 2,有助于DNA碱基的降解。由于低吸附能、高电荷转移和强大的 PMS 裂解能力,MF 表现出优异的 PMS 吸附和活化性能。MF中的MoS 2可以促进Fe(III)/Fe(II)的循环,提高催化性能。MF/PMS 系统在复杂水基质(包括不同溶液 pH 值、阴离子和天然有机物共存)以及实际水样(包括自来水、河水、海水和污水)中取得了优异的催化性能,特别是在高盐度条件下,由于 Cl ·自由基和 HClO 物种的产生。MF/PMS 系统还可以有效地降解 ARGs(染色体kanR和质粒gmrA ) 以及在超短时间内从抗生素耐药细菌 (ARB) 中提取的 DNA。此外,完全消毒两种型号 ARB(大肠杆菌K-12 MG 1655 和大肠杆菌S17-1) 也可以在 MF/PMS 系统中实现。MF/PMS 系统在重复使用实验和 14 天连续流动反应器实验中实现的高降解性能表明 MF 颗粒的稳定性。由于 MF 的磁性,使用后可以很方便地将 MF 颗粒与水分离,促进 MF 的再利用,避免催化剂对水的潜在污染。总的来说,这项研究不仅深入了解了 Fe/Mo 触发的 PMS 激活过程,而且为处理水中的 DNA 碱基、ARG、DNA 和 ARB 提供了一种有效可靠的方法。