当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biomass derived S, N self-doped catalytic Janus cathode for flow-through metal-free electrochemical advanced oxidation process: Better removal efficiency and lower energy consumption under neutral conditions
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-04-29 , DOI: 10.1016/j.cej.2023.143283
Xuechun Wang , Qizhan Zhang , Jiana Jing , Ge Song , Minghua Zhou

Facing low treatment efficiency, narrow adaptive pH and high energy consumption in electro-Fenton (EF), we proposed a novel flow-through metal-free electrochemical advanced oxidation processes (EAOPs) using biomass derived S, N self-doped catalytic Janus cathode named SNJC. The SNJC was composed of a hydrophobic gas diffusion layer in the middle and hydrophilic catalytic membrane at both ends, while the catalytic membrane of S, N self-doped biomass carbon named SN-BC was derived from waste ginkgo leaves without additional supporting templates or activation processes. The conversion of graphite N, pyridinic N and thiophene S in SN-BC played a significant role in efficient oxygen reduction reaction (ORR) for HO generation and in-situ active species generation. The efficient enrichment and rapid degradation of pollutants in catalytic membrane achieved almost complete removal of tetracycline within 120 min with a low energy consumption of 16.8 kWh/kg TOC. This flow-through system exhibited superior catalytic performance in wide pH ranges (3–11) due to the collective effect of radicals (OH and O) and non-radical (O). This work provides a new insight towards the design of S, N self-doped Janus electrode and activation mechanism of in-situ generation and metal-free catalysis of HO in flow-through EAOPs.

中文翻译:

生物质衍生的S、N自掺杂催化Janus阴极,用于流通式无金属电化学高级氧化工艺:中性条件下更好的去除效率和更低的能耗

面对电芬顿(EF)处理效率低、适应性pH值窄和能耗高的问题,我们提出了一种新型流通式无金属电化学高级氧化工艺(EAOP),采用生物质衍生的S、N自掺杂催化Janus阴极,命名为SNJC。 SNJC由中间疏水性气体扩散层和两端亲水性催化膜组成,而S、N自掺杂生物质碳催化膜SN-BC则取自废弃银杏叶,无需额外支撑模板或活化流程。 SN-BC中石墨N、吡啶N和噻吩S的转化在高效氧还原反应(ORR)中产生H2O和原位活性物质生成中发挥着重要作用。催化膜对污染物的高效富集和快速降解,实现了120分钟内四环素几乎完全去除,能耗低至16.8kWh/kg TOC。由于自由基(OH 和 O)和非自由基(O)的共同作用,该流通系统在较宽的 pH 范围 (3-11) 中表现出优异的催化性能。这项工作为S、N自掺杂Janus电极的设计以及流通式EAOP中H2O的原位生成和无金属催化的活化机制提供了新的见解。
更新日期:2023-04-29
down
wechat
bug