当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Manipulating the Polytellurides of Metallic Telluride for Ultra-Stable Potassium-Ion Storage: A Case Study of Carbon-Confined CoTe2 Nanofibers
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-04-27 , DOI: 10.1002/aenm.202300150
Qinghua Li 1 , Jian Peng 2 , Wei Zhang 1 , Lixiang Wang 3 , Zhixin Liang 1 , Gaoyu Wang 1 , Jiawei Wu 1 , Wenbo Fan 1 , Haixia Li 1 , Jiazhao Wang 2 , Shaoming Huang 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-04-27 , DOI: 10.1002/aenm.202300150
Qinghua Li 1 , Jian Peng 2 , Wei Zhang 1 , Lixiang Wang 3 , Zhixin Liang 1 , Gaoyu Wang 1 , Jiawei Wu 1 , Wenbo Fan 1 , Haixia Li 1 , Jiazhao Wang 2 , Shaoming Huang 1
Affiliation
![]() |
Transition metal tellurides (TMTes) are promising anode materials for high energy density potassium-ion batteries (PIBs) due to their high electronic conductivity and high theoretical volumetric capacity. Most reported TMTes electrodes have limited lifespans, however, in this work, for the first time, it is revealed that the dissolution and shuttling effect of polytellurides (K5Te3 and K2Te) are the key reasons for the rapid deterioration of cycling stability in TMTe-based conversion- and alloy-type anodes. In light of this, a dual-type N-doped carbon-confined CoTe2 composite material (CoTe2@NPCNFs@NC, where NPCNFs stands for N-doped porous carbon nanofibers and NC represents N-doped porous carbon) is proposed to suppress the dissolution and shuttle effect of polytellurides, which boosts the cycling stability up to 1000 cycles at 2 A g−1. Furthermore, various in situ and ex situ techniques and theoretical calculations are employed to systematically clarify the formation and transformation of polytellurides and to reveal the good physical confinement of the dual-type carbon and the strong chemisorption of pyridinic-N and pyrrolic-N on K5Te3 and K2Te. This work highlights the important role of manipulating polytelluride in the design of long-lifespan TMTe anodes for advanced PIBs.
中文翻译:
操纵金属碲化物的聚碲化物以实现超稳定钾离子存储:碳限制 CoTe2 纳米纤维的案例研究
过渡金属碲化物(TMT)由于其高电子电导率和高理论体积容量而成为高能量密度钾离子电池(PIB)的有前途的负极材料。大多数报道的TMTes电极的寿命有限,然而,在这项工作中,首次揭示了聚碲化物(K 5 Te 3 和K 2 Te)的溶解和穿梭效应是TMTe基转换型和合金型负极循环稳定性迅速恶化的关键原因。鉴于此,双型N掺杂碳限域CoTe 2复合材料(CoTe 2@NPCNFs@NC,其中NPCNFs代表N掺杂多孔碳纳米纤维,NC代表N掺杂多孔碳)被提出来抑制聚碲化物的溶解和穿梭效应,从而将2 A g -1 下的循环稳定性提高至1000次循环。此外,采用各种原位和异位技术以及理论计算,系统地阐明了聚碲化物的形成和转化,揭示了双型碳良好的物理限制以及吡啶-N和吡咯-N在K 5 Te 3 和K 2 Te上的强化学吸附。这项工作强调了操纵聚碲化物在先进 PIB 的长寿命 TMTe 阳极设计中的重要作用。
更新日期:2023-04-27
中文翻译:

操纵金属碲化物的聚碲化物以实现超稳定钾离子存储:碳限制 CoTe2 纳米纤维的案例研究
过渡金属碲化物(TMT)由于其高电子电导率和高理论体积容量而成为高能量密度钾离子电池(PIB)的有前途的负极材料。大多数报道的TMTes电极的寿命有限,然而,在这项工作中,首次揭示了聚碲化物(K 5 Te 3 和K 2 Te)的溶解和穿梭效应是TMTe基转换型和合金型负极循环稳定性迅速恶化的关键原因。鉴于此,双型N掺杂碳限域CoTe 2复合材料(CoTe 2@NPCNFs@NC,其中NPCNFs代表N掺杂多孔碳纳米纤维,NC代表N掺杂多孔碳)被提出来抑制聚碲化物的溶解和穿梭效应,从而将2 A g -1 下的循环稳定性提高至1000次循环。此外,采用各种原位和异位技术以及理论计算,系统地阐明了聚碲化物的形成和转化,揭示了双型碳良好的物理限制以及吡啶-N和吡咯-N在K 5 Te 3 和K 2 Te上的强化学吸附。这项工作强调了操纵聚碲化物在先进 PIB 的长寿命 TMTe 阳极设计中的重要作用。