Colloids and Surfaces A: Physicochemical and Engineering Aspects ( IF 4.9 ) Pub Date : 2023-04-25 , DOI: 10.1016/j.colsurfa.2023.131540 Hui Xu , Qingyao Wang , Yuhua Zhao , Bing Zhang , Kun Wang , Guangshun Wu , Yizhuang Ye , Qingsong Yang , Kaiquan Yang , Chenguang Yin
Environmental pollution and resource shortage are big challenges for the development and life of human society, and the photocatalyst has been a prospective material to solve these problems by solar energy utilization and conversion. However, the issues including single function, low efficiency and weak photoelectrochemial stability still hinder the practical application of photocatalysts. In this work, ternary hereojunction photocatalysts with multiple photoelectrochemical applications were prepared by the hydrothermal deposition of MoS2 and CdS sensitizers on TiO2 nanotube arrays (TiO2 NTs), and the dramatically high photocatalytic performance and stability in pollutant treatment and photoelectric/H2 generation were obtained. The characterization data indicated that the high photocatalytic efficiencies of 51.57 %/3 h, 99.83 %/3 h, 99.51 %/2 h and 59.71 %/3 h were achieved toward the removal of MO, RhB, MB and Cr(VI), the photocurrent and photovoltage were 451.70 μA/cm2 and −0.31 V, and the photocatalytic H2 generation rate of 200.81 μmol·cm−2·h−1 was obtained under visible light irradiation. The straightway charge carrier transportation path of TiO2 NTs/MoS2-CdS photocatalysts is the effective guarantee for the low electron/hole recombination chance and high photocatalytic performance.
中文翻译:
用于可见光驱动光电化学性能的 TiO2 NTs/MoS2-CdS 混合光电阴极:废水修复、光电转化和氢气生成
环境污染和资源短缺是人类社会发展和生活面临的巨大挑战,而光触媒通过太阳能利用和转化成为解决这些问题的有前途的材料。然而,功能单一、效率低和光电化学稳定性差等问题仍然阻碍了光催化剂的实际应用。在这项工作中,通过在 TiO 2纳米管阵列(TiO 2 NTs)上水热沉积 MoS 2和 CdS 敏化剂,制备了具有多种光电化学应用的三元异质结光催化剂,并在污染物处理和光电/H 2中具有极高的光催化性能和稳定性获得一代。表征数据表明,在去除 MO、RhB、MB 和 Cr(VI) 方面实现了 51.57 %/3 h、99.83 %/3 h、99.51 %/2 h 和 59.71 %/3 h 的高光催化效率,可见光照射下光电流和光电压分别为451.70 μA/cm 2和-0.31 V,光催化H 2生成率为200.81 μmol·cm -2 ·h -1 。TiO 2 NTs/MoS 2 -CdS光催化剂的直接电荷载流子传输路径是低电子/空穴复合机会和高光催化性能的有效保证。