Nature Communications ( IF 14.7 ) Pub Date : 2023-04-25 , DOI: 10.1038/s41467-023-37490-0 Taiyu Chen 1, 2 , Marta Hojka 3 , Philip Davey 4 , Yaqi Sun 1 , Gregory F Dykes 1 , Fei Zhou 2 , Tracy Lawson 4 , Peter J Nixon 3 , Yongjun Lin 2 , Lu-Ning Liu 1, 5
The growth in world population, climate change, and resource scarcity necessitate a sustainable increase in crop productivity. Photosynthesis in major crops is limited by the inefficiency of the key CO2-fixing enzyme Rubisco, owing to its low carboxylation rate and poor ability to discriminate between CO2 and O2. In cyanobacteria and proteobacteria, carboxysomes function as the central CO2-fixing organelles that elevate CO2 levels around encapsulated Rubisco to enhance carboxylation. There is growing interest in engineering carboxysomes into crop chloroplasts as a potential route for improving photosynthesis and crop yields. Here, we generate morphologically correct carboxysomes in tobacco chloroplasts by transforming nine carboxysome genetic components derived from a proteobacterium. The chloroplast-expressed carboxysomes display a structural and functional integrity comparable to native carboxysomes and support autotrophic growth and photosynthesis of the transplastomic plants at elevated CO2. Our study provides proof-of-concept for a route to engineering fully functional CO2-fixing modules and entire CO2-concentrating mechanisms into chloroplasts to improve crop photosynthesis and productivity.
中文翻译:
将 α-羧基体工程化到植物叶绿体中以支持自养光合作用
世界人口的增长、气候变化和资源稀缺需要持续提高作物生产力。主要作物的光合作用受到关键 CO 2固定酶 Rubisco低效率的限制,因为它的羧化率低且区分 CO 2和 O 2的能力差。在蓝藻和变形菌中,羧基体作为中央 CO 2固定细胞器发挥作用,可提高 CO 2在封装的 Rubisco 周围水平以增强羧化作用。人们越来越关注将羧基体工程化到作物叶绿体中作为提高光合作用和作物产量的潜在途径。在这里,我们通过转化来自变形菌的九种羧基体遗传成分,在烟草叶绿体中生成形态正确的羧基体。叶绿体表达的羧基体显示出与天然羧基体相当的结构和功能完整性,并支持转质体植物在升高的 CO 2 条件下的自养生长和光合作用。我们的研究为设计全功能 CO 2固定模块和整个 CO 2的途径提供了概念验证- 将机制集中到叶绿体中以提高作物光合作用和生产力。