当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sample-to-answer platform for the clinical evaluation of COVID-19 using a deep learning-assisted smartphone-based assay
Nature Communications ( IF 14.7 ) Pub Date : 2023-04-24 , DOI: 10.1038/s41467-023-38104-5
Seungmin Lee 1, 2 , Sunmok Kim 1 , Dae Sung Yoon 2, 3, 4 , Jeong Soo Park 1 , Hyowon Woo 1 , Dongho Lee 5 , Sung-Yeon Cho 6, 7 , Chulmin Park 6 , Yong Kyoung Yoo 8 , Ki-Baek Lee 1 , Jeong Hoon Lee 1
Affiliation  

Since many lateral flow assays (LFA) are tested daily, the improvement in accuracy can greatly impact individual patient care and public health. However, current self-testing for COVID-19 detection suffers from low accuracy, mainly due to the LFA sensitivity and reading ambiguities. Here, we present deep learning-assisted smartphone-based LFA (SMARTAI-LFA) diagnostics to provide accurate decisions with higher sensitivity. Combining clinical data learning and two-step algorithms enables a cradle-free on-site assay with higher accuracy than the untrained individuals and human experts via blind tests of clinical data (n = 1500). We acquired 98% accuracy across 135 smartphone application-based clinical tests with different users/smartphones. Furthermore, with more low-titer tests, we observed that the accuracy of SMARTAI-LFA was maintained at over 99% while there was a significant decrease in human accuracy, indicating the reliable performance of SMARTAI-LFA. We envision a smartphone-based SMARTAI-LFA that allows continuously enhanced performance by adding clinical tests and satisfies the new criterion for digitalized real-time diagnostics.



中文翻译:

使用基于深度学习辅助智能手机的检测对 COVID-19 进行临床评估的样本到答案平台

由于许多侧流分析 (LFA) 每天都要进行测试,因此准确性的提高会极大地影响个体患者护理和公共卫生。然而,目前用于 COVID-19 检测的自测精度较低,这主要是由于 LFA 的灵敏度和读数歧义。在这里,我们展示了深度学习辅助的基于智能手机的 LFA (SMART AI -LFA) 诊断,以提供具有更高灵敏度的准确决策。结合临床数据学习和两步算法,可以通过临床数据的盲测进行无支架现场检测,其准确性高于未经训练的个人和人类专家(n = 1500)。我们在 135 项基于智能手机应用程序的临床测试中获得了 98% 的准确率,测试对象为不同的用户/智能手机。此外,通过更多的低滴度测试,我们观察到 SMART AI -LFA 的准确率保持在 99% 以上,而人类准确率却有显着下降,表明 SMART AI -LFA 的性能可靠。我们设想了一种基于智能手机的 SMART AI -LFA,它可以通过添加临床测试来不断提高性能,并满足数字化实时诊断的新标准。

更新日期:2023-04-25
down
wechat
bug