当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A conformal van der Waals graphene coating enabled high-performance piezo-ionic sensor for spatial, gesture, and object recognition
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2023-04-25 , DOI: 10.1039/d3ta00215b Ziqi Li 1, 2 , Andrew Balilonda 1 , Wen Mei 1 , Wenbo Li 1 , Wei Chen 1, 2, 3
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2023-04-25 , DOI: 10.1039/d3ta00215b Ziqi Li 1, 2 , Andrew Balilonda 1 , Wen Mei 1 , Wenbo Li 1 , Wei Chen 1, 2, 3
Affiliation
Transforming mechanical forces into electrical signals is vital in self-powered strain sensors. Compared to piezoelectric materials, piezo-ionic materials show great potential in self-powered strain sensors because of the passive and direction identification characteristics arising from the ion gradient under pressure. However, the low signal output (less than 5 mV) of piezo-ionic sensors might be influenced by the bioelectricity when used in practical applications. In addition, the normally used metal electrodes face fracture under high and long-term strain. Here, we used a dry coating method to prepare highly conformal, highly electrically conductive (minimum sheet resistance of 16 ohm sq−1), and highly deformed graphene electrodes with a van der Waals (vdW) structure. Such conformal vdW graphene (vdWGR) electrodes could enhance the signal output to 90.3 mV and resist a large strain of 50% bending variation with 10 000 cycles, avoiding bioelectricity interference and electrode fracture during use. Interestingly, the vdWGR-assisted piezo-ionic sensor exhibited a special “bouncing back” peak when touched by soft objects, which could be utilized for object recognition. We demonstrated its applications in spatial, gesture, and object recognition by utilizing the piezo-ionic strain sensor's differences in the peak value, directionality, and shapes. The preparation method for high-performance vdW graphene electrodes can be extended to other flexible electrodes or electronics. Besides, the piezo-ionic effect identifying the softness or hardness of objects might assist piezo-ionic sensors in more applications.
中文翻译:
共形范德瓦尔斯石墨烯涂层使高性能压电离子传感器能够用于空间、手势和物体识别
将机械力转化为电信号对于自供电应变传感器至关重要。与压电材料相比,压电离子材料由于在压力下离子梯度产生的被动和方向识别特性,在自供电应变传感器中显示出巨大的潜力。然而,在实际应用中,压电离子传感器的低信号输出(小于 5 mV)可能会受到生物电的影响。此外,通常使用的金属电极在高应力和长期应力下会发生断裂。在这里,我们使用干式涂布法制备了高度共形、高导电性(最小薄层电阻为 16 ohm sq −1), 以及具有范德瓦尔斯 (vdW) 结构的高度变形石墨烯电极。这种共形 vdW 石墨烯 (vdWGR) 电极可以将信号输出提高到 90.3 mV,并在 10 000 次循环中抵抗 50% 弯曲变化的大应变,避免生物电干扰和电极在使用过程中断裂。有趣的是,vdWGR 辅助压电离子传感器在被软物体触摸时表现出特殊的“反弹”峰,可用于物体识别。我们利用压电离子应变传感器在峰值、方向性和形状方面的差异,展示了其在空间、手势和物体识别方面的应用。高性能vdW石墨烯电极的制备方法可以扩展到其他柔性电极或电子产品。除了,
更新日期:2023-04-25
中文翻译:
共形范德瓦尔斯石墨烯涂层使高性能压电离子传感器能够用于空间、手势和物体识别
将机械力转化为电信号对于自供电应变传感器至关重要。与压电材料相比,压电离子材料由于在压力下离子梯度产生的被动和方向识别特性,在自供电应变传感器中显示出巨大的潜力。然而,在实际应用中,压电离子传感器的低信号输出(小于 5 mV)可能会受到生物电的影响。此外,通常使用的金属电极在高应力和长期应力下会发生断裂。在这里,我们使用干式涂布法制备了高度共形、高导电性(最小薄层电阻为 16 ohm sq −1), 以及具有范德瓦尔斯 (vdW) 结构的高度变形石墨烯电极。这种共形 vdW 石墨烯 (vdWGR) 电极可以将信号输出提高到 90.3 mV,并在 10 000 次循环中抵抗 50% 弯曲变化的大应变,避免生物电干扰和电极在使用过程中断裂。有趣的是,vdWGR 辅助压电离子传感器在被软物体触摸时表现出特殊的“反弹”峰,可用于物体识别。我们利用压电离子应变传感器在峰值、方向性和形状方面的差异,展示了其在空间、手势和物体识别方面的应用。高性能vdW石墨烯电极的制备方法可以扩展到其他柔性电极或电子产品。除了,