Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Solar-Powered Interfacial Evaporation and Deicing Based on a 3D-Printed Multiscale Hierarchical Design
Small ( IF 13.0 ) Pub Date : 2023-04-22 , DOI: 10.1002/smll.202301474 Na Li 1 , Ke Shao 1 , Jintao He 1 , Shuxue Wang 1 , Shuai Li 1 , Xiaochun Wu 1 , Jingjing Li 1 , Cui Guo 2 , Liangmin Yu 3, 4 , Petri Murto 5 , Junwu Chen 6 , Xiaofeng Xu 1
Small ( IF 13.0 ) Pub Date : 2023-04-22 , DOI: 10.1002/smll.202301474 Na Li 1 , Ke Shao 1 , Jintao He 1 , Shuxue Wang 1 , Shuai Li 1 , Xiaochun Wu 1 , Jingjing Li 1 , Cui Guo 2 , Liangmin Yu 3, 4 , Petri Murto 5 , Junwu Chen 6 , Xiaofeng Xu 1
Affiliation
Solar-powered interfacial heating has emerged as a sustainable technology for hybrid applications with minimal carbon footprints. Aerogels, hydrogels, and sponges/foams are the main building blocks for state-of-the-art photothermal materials. However, these conventional three-dimensional (3D) structures and related fabrication technologies intrinsically fail to maximize important performance-enhancing strategies and this technology still faces several performance roadblocks. Herein, monolithic, self-standing, and durable aerogel matrices are developed based on composite photothermal inks and ink-extrusion 3D printing, delivering all-in-one interfacial steam generators (SGs). Rapid prototyping of multiscale hierarchical structures synergistically reduce the energy demand for evaporation, expand actual evaporation areas, generate massive environmental energy input, and improve mass flows. Under 1 sun, high water evaporation rates of 3.74 kg m−2 h−1 in calm air and 25.3 kg m−2 h−1 at a gentle breeze of 2 m s−1 are achieved, ranking among the best-performing solar-powered interfacial SGs. 3D-printed microchannels and hydrophobic modification deliver an icephobic surface of the aerogels, leading to self-propelled and rapid removal of ice droplets. This work shines light on rational fabrication of hierarchical photothermal materials, not merely breaking through the constraints of solar-powered interfacial evaporation and clean water production, but also discovering new functions for photothermal interfacial deicing.
中文翻译:
基于 3D 打印多尺度分层设计的太阳能界面蒸发和除冰
太阳能界面加热已成为混合动力应用的可持续技术,碳足迹最小。气凝胶、水凝胶和海绵/泡沫是最先进的光热材料的主要组成部分。然而,这些传统的三维 (3D) 结构和相关制造技术本质上无法最大限度地发挥重要的性能增强策略,并且该技术仍然面临一些性能障碍。在此,基于复合光热墨水和墨水挤出 3D 打印开发出整体式、自支撑式和耐用的气凝胶基质,提供一体化界面蒸汽发生器 (SG)。多尺度分层结构的快速原型化协同减少了蒸发的能量需求,扩大了实际蒸发面积,产生了大量的环境能量输入,并改善了质量流量。在 1 个太阳照射下,平静空气中的水分蒸发率为 3.74 kg m −2 h −1 ,微风 2 ms −1 时的水分蒸发率为25.3 kg m −2 h −1,跻身性能最佳的太阳能发电系统之列。界面SG。3D 打印的微通道和疏水改性为气凝胶提供了疏冰表面,从而实现自驱动并快速去除冰滴。这项工作揭示了分级光热材料的合理制造,不仅突破了太阳能界面蒸发和清洁水生产的限制,而且发现了光热界面除冰的新功能。
更新日期:2023-04-22
中文翻译:
基于 3D 打印多尺度分层设计的太阳能界面蒸发和除冰
太阳能界面加热已成为混合动力应用的可持续技术,碳足迹最小。气凝胶、水凝胶和海绵/泡沫是最先进的光热材料的主要组成部分。然而,这些传统的三维 (3D) 结构和相关制造技术本质上无法最大限度地发挥重要的性能增强策略,并且该技术仍然面临一些性能障碍。在此,基于复合光热墨水和墨水挤出 3D 打印开发出整体式、自支撑式和耐用的气凝胶基质,提供一体化界面蒸汽发生器 (SG)。多尺度分层结构的快速原型化协同减少了蒸发的能量需求,扩大了实际蒸发面积,产生了大量的环境能量输入,并改善了质量流量。在 1 个太阳照射下,平静空气中的水分蒸发率为 3.74 kg m −2 h −1 ,微风 2 ms −1 时的水分蒸发率为25.3 kg m −2 h −1,跻身性能最佳的太阳能发电系统之列。界面SG。3D 打印的微通道和疏水改性为气凝胶提供了疏冰表面,从而实现自驱动并快速去除冰滴。这项工作揭示了分级光热材料的合理制造,不仅突破了太阳能界面蒸发和清洁水生产的限制,而且发现了光热界面除冰的新功能。