当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
V2O3@C Microspheres as the High-Performance Cathode Materials for Advanced Aqueous Zinc-Ion Storage
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-04-21 , DOI: 10.1021/acsami.2c21763 Deqiang Wang 1 , Wenhao Liang 2 , Xuedong He 1 , Yun Yang 1 , Shun Wang 1 , Jun Li 1 , Jichang Wang 3 , Huile Jin 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-04-21 , DOI: 10.1021/acsami.2c21763 Deqiang Wang 1 , Wenhao Liang 2 , Xuedong He 1 , Yun Yang 1 , Shun Wang 1 , Jun Li 1 , Jichang Wang 3 , Huile Jin 1
Affiliation
Vanadium oxides attract increasing research interests for constructing the cathode of aqueous zinc-ion batteries (ZIBs) because of high theoretical capacity, but the low intrinsic conductivity and unstable phase changes during the charge/discharge process pose great challenges for their adoption. In this work, V2O3@C microspheres were developed to achieve enhanced conductivity and improved stability of phase changes. Compounding vanadium oxides and conductive carbon through the in-situ carbonization led to significant improvement of the cathode materials. ZIBs prepared with V2O3@C cathodes produce a specific capacity of 420 mA h g–1 at 0.2 A g–1. A reversible capacity of 132 mA h g–1 was achieved at 21.0 A g–1. After 2000 cycles, the electrode could still deliver a capacity of 202 mA h g–1 at the current of 5.0 A g–1. Besides, the energy density of batteries constructed with the thus-prepared electrodes was about 294 W h kg–1 at 148 W kg–1 power. The in-situ compounding of V2O3 and carbon resulted in a microstructure that facilitated the stable phase transformation of ZnxV2O5–a·nH2O (ZnVOH), which provided more Zn2+ storage activity than the original phase before electrochemical activation. Moreover, the in-situ compositing strategy presents a simple route to the development of ZIB cathodes with promising performance.
中文翻译:
V2O3@C 微球作为先进水系锌离子存储的高性能阴极材料
由于理论容量高,钒氧化物在构建水系锌离子电池(ZIBs)正极方面引起了越来越多的研究兴趣,但其低本征电导率和充电/放电过程中不稳定的相变对其应用提出了巨大挑战。在这项工作中,开发了V 2 O 3 @C 微球以实现增强的导电性和改进的相变稳定性。通过原位碳化将钒氧化物和导电碳复合,显着改善了阴极材料。用 V 2 O 3 @C 阴极制备的 ZIB在 0.2 A g –1时产生 420 mA hg –1的比容量。132 mA hg 的可逆容量–1在 21.0 A g –1下实现。在 2000 次循环后,电极在 5.0 A g –1的电流下仍可提供 202 mA hg –1的容量。此外,用如此制备的电极构建的电池在148 W kg -1功率下的能量密度约为294 W h kg -1。V 2 O 3和碳的原位复合形成促进 Zn x V 2 O 5– a · n H 2 O (ZnVOH) 稳定相变的微观结构,从而提供更多的 Zn 2+储存活性高于电化学活化前的原相。此外,原位复合策略为开发具有良好性能的 ZIB 正极提供了一条简单的途径。
更新日期:2023-04-21
中文翻译:
V2O3@C 微球作为先进水系锌离子存储的高性能阴极材料
由于理论容量高,钒氧化物在构建水系锌离子电池(ZIBs)正极方面引起了越来越多的研究兴趣,但其低本征电导率和充电/放电过程中不稳定的相变对其应用提出了巨大挑战。在这项工作中,开发了V 2 O 3 @C 微球以实现增强的导电性和改进的相变稳定性。通过原位碳化将钒氧化物和导电碳复合,显着改善了阴极材料。用 V 2 O 3 @C 阴极制备的 ZIB在 0.2 A g –1时产生 420 mA hg –1的比容量。132 mA hg 的可逆容量–1在 21.0 A g –1下实现。在 2000 次循环后,电极在 5.0 A g –1的电流下仍可提供 202 mA hg –1的容量。此外,用如此制备的电极构建的电池在148 W kg -1功率下的能量密度约为294 W h kg -1。V 2 O 3和碳的原位复合形成促进 Zn x V 2 O 5– a · n H 2 O (ZnVOH) 稳定相变的微观结构,从而提供更多的 Zn 2+储存活性高于电化学活化前的原相。此外,原位复合策略为开发具有良好性能的 ZIB 正极提供了一条简单的途径。