当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rapid Synthesis of Ultrathin Ni:FeOOH with In Situ-Induced Oxygen Vacancies for Enhanced Water Oxidation Activity and Stability of BiVO4 Photoanodes
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-04-21 , DOI: 10.1021/acsami.3c01877 Mayur A Gaikwad 1 , Uma V Ghorpade 2 , Umesh P Suryawanshi 1 , Priyank V Kumar 3 , Suyoung Jang 1 , Jun Sung Jang 1 , Lan Tran 4 , Jong-Sook Lee 4 , Hyojung Bae 5 , Seung Wook Shin 6 , Mahesh P Suryawanshi 7 , Jin Hyeok Kim 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-04-21 , DOI: 10.1021/acsami.3c01877 Mayur A Gaikwad 1 , Uma V Ghorpade 2 , Umesh P Suryawanshi 1 , Priyank V Kumar 3 , Suyoung Jang 1 , Jun Sung Jang 1 , Lan Tran 4 , Jong-Sook Lee 4 , Hyojung Bae 5 , Seung Wook Shin 6 , Mahesh P Suryawanshi 7 , Jin Hyeok Kim 1
Affiliation
The coupling of oxygen evolution reaction (OER) catalysts with photoanodes is a promising strategy for enhancing the photoelectrochemical (PEC) performance by passivating photoanode’s surface defect states and facilitating charge transfer at the photoanode/electrolyte interface. However, a serious interface recombination issue caused by poor interface and OER catalysts coating quality often limits further performance improvement of photoanodes. Herein, a rapid Fenton-like reaction method is demonstrated to produce ultrathin amorphous Ni:FeOOH catalysts with in situ-induced oxygen vacancies (Vo) to improve the water oxidation activity and stability of BiVO4 photoanodes. The combined physical characterizations, PEC studies, and density functional theory calculations revealed that the reductive environment in a Fenton-like reaction in situ produces abundant Vo in Ni:FeOOH catalysts, which significantly improves charge separation and charge transfer efficiency of BiVO4 while also offering abundant active sites and a reduced energy barrier for OER. As a result, Ni:FeOOH-Vo catalysts yielded a more than 2-fold increased photocurrent density in the BiVO4 photoanode (from 1.54 to 4.15 mA cm–2 at 1.23 VRHE), accompanied by high stability for 5 h. This work not only highlights the significance of abundant Vo in catalysts but also provides new insights into the rational design and fabrication of efficient and stable solar water-splitting systems.
中文翻译:
快速合成具有原位诱导氧空位的超薄 Ni:FeOOH 以提高 BiVO4 光电阳极的水氧化活性和稳定性
将析氧反应 (OER) 催化剂与光阳极耦合是一种很有前途的策略,可通过钝化光阳极的表面缺陷态并促进光阳极/电解质界面处的电荷转移来提高光电化学 (PEC) 性能。然而,由不良界面和OER催化剂涂层质量引起的严重界面复合问题往往限制了光阳极性能的进一步提高。在此,证明了一种快速类芬顿反应方法可制备具有原位诱导氧空位 (Vo) 的超薄无定形 Ni:FeOOH 催化剂,以提高 BiVO 4 的水氧化活性和稳定性光阳极。结合物理表征、PEC 研究和密度泛函理论计算表明,类芬顿反应中的还原环境会在 Ni:FeOOH 催化剂中产生大量的 Vo,这显着提高了 BiVO 4 的电荷分离和电荷转移效率,同时还提供丰富的活性位点和降低的 OER 能垒。结果,Ni:FeOOH-Vo 催化剂在 BiVO 4光电阳极中产生了超过 2 倍的光电流密度增加(在 1.23 V RHE下从 1.54 到 4.15 mA cm –2), 伴随着 5 小时的高稳定性。这项工作不仅突出了催化剂中丰富的 Vo 的重要性,而且为合理设计和制造高效稳定的太阳能水分解系统提供了新的见解。
更新日期:2023-04-21
中文翻译:
快速合成具有原位诱导氧空位的超薄 Ni:FeOOH 以提高 BiVO4 光电阳极的水氧化活性和稳定性
将析氧反应 (OER) 催化剂与光阳极耦合是一种很有前途的策略,可通过钝化光阳极的表面缺陷态并促进光阳极/电解质界面处的电荷转移来提高光电化学 (PEC) 性能。然而,由不良界面和OER催化剂涂层质量引起的严重界面复合问题往往限制了光阳极性能的进一步提高。在此,证明了一种快速类芬顿反应方法可制备具有原位诱导氧空位 (Vo) 的超薄无定形 Ni:FeOOH 催化剂,以提高 BiVO 4 的水氧化活性和稳定性光阳极。结合物理表征、PEC 研究和密度泛函理论计算表明,类芬顿反应中的还原环境会在 Ni:FeOOH 催化剂中产生大量的 Vo,这显着提高了 BiVO 4 的电荷分离和电荷转移效率,同时还提供丰富的活性位点和降低的 OER 能垒。结果,Ni:FeOOH-Vo 催化剂在 BiVO 4光电阳极中产生了超过 2 倍的光电流密度增加(在 1.23 V RHE下从 1.54 到 4.15 mA cm –2), 伴随着 5 小时的高稳定性。这项工作不仅突出了催化剂中丰富的 Vo 的重要性,而且为合理设计和制造高效稳定的太阳能水分解系统提供了新的见解。