当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular-Level Characterization of Oxygen Local Environments in a Pristine and Post-Synthetically Modified Metal–Organic Framework via 17O Nuclear Magnetic Resonance Spectroscopy
Chemistry of Materials ( IF 7.2 ) Pub Date : 2023-04-20 , DOI: 10.1021/acs.chemmater.3c00199
Vinicius Martins 1 , Bryan E.G. Lucier 1 , Kuizhi Chen 2 , Ivan Hung 2 , Zhehong Gan 2 , Christel Gervais 3 , Christian Bonhomme 3 , Heng-Yong Nie 4 , Wanli Zhang 1 , Yining Huang 1
Affiliation  

Porous metal–organic frameworks (MOFs) have found many technological applications in fields such as carbon capture and storage, catalysis, and selective guest adsorption. Post-synthetic modification (PSM) approaches can influence MOF properties by introducing new functional groups or metals. MIL-121 is a prototypical aluminum MOF containing free uncoordinated carboxylic acid groups, which can act as adsorption sites for metal exchange as they are accessible to guests from within the pores. The introduction of metal species has been proven to enhance the gas adsorption capacity and catalytic properties of MIL-121. A deeper understanding of how MOF carboxylic acid groups interact with metals is imperative for the development of advanced industrially relevant materials. In this work, we demonstrate the remarkable capability of 17O solid-state NMR at 35.2 and 19.6 T to assign each 17O resonance in MIL-121 to its chemical/crystallographic oxygen site, provide site-specific structural information, and probe both the location and binding mode of metal guests within the framework. A series of 1D and 2D 17O NMR experiments on 17O-enriched MIL-121 supported by computational methods have been employed to study changes in the local environments of oxygen upon the activation of the material as well as upon metal loading. These results clearly show that the high spectral resolution achieved via high-field magic-angle spinning (MAS), REDOR (rotational-echo double-resonance), multiple-quantum MAS (MQMAS), and D-HMQC (dipolar heteronuclear multiple-quantum coherence) experiments yields unprecedented insight into this MOF. The 17O NMR parameters provide molecular-level information regarding the local oxygen environment, intermolecular interactions, and host–guest connectivity. This experimental approach can be applied to a wide variety of oxygen-containing MOFs.

中文翻译:

通过 17O 核磁共振光谱对原始和合成后改性金属-有机骨架中氧局部环境的分子水平表征

多孔金属有机框架(MOFs)在碳捕获和储存、催化和选择性客体吸附等领域有许多技术应用。合成后修饰 (PSM) 方法可以通过引入新的官能团或金属来影响 MOF 的特性。MIL-121 是一种原型铝 MOF,含有游离的未配位羧酸基团,可以作为金属交换的吸附位点,因为客人可以从孔隙内接近它们。金属物种的引入已被证明可以提高 MIL-121 的气体吸附能力和催化性能。更深入地了解 MOF 羧酸基团如何与金属相互作用对于开发先进的工业相关材料至关重要。在这项工作中,我们展示了非凡的能力35.2 和 19.6 T 的17 O 固态 NMR 将MIL-121 中的每个 17 O 共振分配到其化学/晶体学氧位点,提供特定位点的结构信息,并探测框架内金属客体的位置和结合模式. 一系列 1D 和 2D 17 O NMR 实验17由计算方法支持的富含 O 的 MIL-121 已被用于研究材料活化和金属负载时氧气局部环境的变化。这些结果清楚地表明,通过高场魔角自旋 (MAS)、REDOR(旋转回波双共振)、多量子 MAS (MQMAS) 和 D-HMQC(偶极异核多量子相干性)实验对这种 MOF 产生了前所未有的洞察力。17 O NMR 参数提供有关局部氧气环境、分子间相互作用和主客体连接性的分子水平信息。该实验方法可应用于多种含氧 MOF。
更新日期:2023-04-20
down
wechat
bug