当前位置: X-MOL 学术Nano Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial engineering of atomic platinum-doped molybdenum carbide quantum dots for high-rate and stable hydrogen evolution reaction in proton exchange membrane water electrolysis
Nano Research ( IF 9.5 ) Pub Date : 2023-04-20 , DOI: 10.1007/s12274-023-5666-2
Lulu Chen , Yichao Huang , Yanping Ding , Ping Yu , Fang Huang , Wenbo Zhou , Limin Wang , Yangyang Jiang , Haitao Li , Hanqing Cai , Lin Wang , Hang Wang , Meihong Liao , Lianming Zhao , Zhuangjun Fan

Platinum (Pt)-based electrocatalysts remain the only practical cathode catalysts for proton exchange membrane water electrolysis (PEMWE), due to their excellent catalytic activity for acidic hydrogen evolution reaction (HER), but are greatly limited by their low reserves and high cost. Here, we report an interfacial engineering strategy to obtain a promising low-Pt loading catalyst with atomically Pt-doped molybdenum carbide quantum dots decorated on conductive porous carbon (Pt-MoCx@C) for high-rate and stable HER in PEMWE. Benefiting from the strong interfacial interaction between Pt atoms and the ultra-small MoCx quantum dots substrate, the Pt-MoCx catalyst exhibits a high mass activity of 8.00 A·mgPt−1, 5.6 times higher than that of commercial 20 wt.% Pt/C catalyst. Moreover, the strong interfacial coupling of Pt and MoCx substrate greatly improves the HER stability of the Pt-MoCx catalyst. Density functional theory studies further confirm the strong metal-support interaction on Pt-MoCx, the critical role of MoCx substrate in the stabilization of surface Pt atoms, as well as activation of MoCx substrate by Pt atoms for improving HER durability and activity. The optimized Pt-MoCx@C catalyst demonstrates > 2000 h stability under a water-splitting current of 1000 mA·cm−2 when applied to the cathode of a PEM water electrolyzer, suggesting the potential for practical applications.



中文翻译:

原子铂掺杂碳化钼量子点的界面工程用于质子交换膜水电解中高速稳定的析氢反应

铂 (Pt) 基电催化剂由于其对酸性析氢反应 (HER) 具有出色的催化活性,仍然是质子交换膜水电解 (PEMWE) 唯一实用的阴极催化剂,但由于其低储量和高成本而受到很大限制。在这里,我们报告了一种界面工程策略,以获得一种有前景的低 Pt 负载催化剂,该催化剂具有装饰在导电多孔碳 (Pt-MoC x @C) 上的原子 Pt 掺杂碳化钼量子点,用于 PEMWE 中的高速率和稳定 HER 。得益于 Pt 原子与超小型 MoC x量子点基底之间的强界面相互作用,Pt-MoC x催化剂表现出 8.00 A·mg Pt −1的高质量活性, 比商业 20 wt.% Pt/C 催化剂高 5.6 倍。此外,Pt和MoC x底物的强界面耦合大大提高了Pt-MoC x催化剂的HER稳定性。密度泛函理论研究进一步证实了 Pt-MoC x上的强金属-载体相互作用、MoC x底物在稳定表面 Pt 原子中的关键作用,以及 Pt 原子激活 MoC x底物以提高 HER 耐久性和活性. 优化的 Pt-MoC x @C 催化剂在 1000 mA·cm −2的水分解电流下表现出 > 2000 h 的稳定性当应用于 PEM 水电解槽的阴极时,表明具有实际应用的潜力。

更新日期:2023-04-20
down
wechat
bug