当前位置: X-MOL 学术Molecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense
Molecules ( IF 4.2 ) Pub Date : 2023-04-19 , DOI: 10.3390/molecules28083572
Mengxuan Gu 1, 2 , Qin Wang 2 , Rui Fan 3 , Shoubai Liu 4 , Fadi Zhu 2 , Gang Feng 2 , Jing Zhang 2
Affiliation  

Isolation for antibacterial compounds from natural plants is a promising approach to develop new pesticides. In this study, two compounds were obtained from the Chinese endemic plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of 1H-NMR, 13C-NMR, and mass spectral data, the isolated compounds were identified as 4-allylbenzene-1,2-diol and (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol. 4-Allylbenzene-1,2-diol was shown to have strong antibacterial activity against four plant pathogens, including Xanthomonas oryzae pathovar oryzae (Xoo), X. axonopodis pv. citri (Xac), X. oryzae pv. oryzicola (Xoc) and X. campestris pv. mangiferaeindicae (Xcm). Further bioassay results exhibited that 4-allylbenzene-1,2-diol had a broad antibacterial spectrum, including Xoo, Xac, Xoc, Xcm, X. fragariae (Xf), X. campestris pv. campestris (Xcc), Pectobacterium carotovorum subspecies brasiliense (Pcb) and P. carotovorum subsp. carotovorum (Pcc), with minimum inhibitory concentration (MIC) values ranging from 333.75 to 1335 μmol/L. The pot experiment showed that 4-allylbenzene-1,2-diol exerted an excellent protective effect against Xoo, with a controlled efficacy reaching 72.73% at 4 MIC, which was superior to the positive control kasugamycin (53.03%) at 4 MIC. Further results demonstrated that the 4-allylbenzene-1,2-diol damaged the integrity of the cell membrane and increased cell membrane permeability. In addition, 4-allylbenzene-1,2-diol also prevented the pathogenicity-related biofilm formation in Xoo, thus limiting the movement of Xoo and reducing the production of extracellular polysaccharides (EPS) in Xoo. These findings suggest the value of 4-allylbenzene-1,2-diol and P. austrosinense could be as promising resources for developing novel antibacterial agents.
更新日期:2023-04-19
down
wechat
bug