当前位置:
X-MOL 学术
›
Green Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Integrating electrocatalytic seawater splitting and biomass upgrading via bifunctional nickel cobalt phosphide nanorods
Green Chemistry ( IF 9.3 ) Pub Date : 2023-04-19 , DOI: 10.1039/d3gc00684k Yunyi Yang 1 , Ren Zou 1 , Jianyun Gan 1 , Yujia Wei 1 , Zhongxin Chen 2 , Xuehui Li 1 , Shimelis Admassie 3 , Yunpeng Liu 4 , Xinwen Peng 1
Green Chemistry ( IF 9.3 ) Pub Date : 2023-04-19 , DOI: 10.1039/d3gc00684k Yunyi Yang 1 , Ren Zou 1 , Jianyun Gan 1 , Yujia Wei 1 , Zhongxin Chen 2 , Xuehui Li 1 , Shimelis Admassie 3 , Yunpeng Liu 4 , Xinwen Peng 1
Affiliation
The high overpotential of the oxygen evolution reaction (OER) and the undesirable chlorine evolution reaction (ClER) severely limit the hydrogen production efficiency of seawater electrolysis. The organic electrooxidation reactions, involving C–H bond oxidation with low bond dissociation energy in the rate-limiting step, can possess lower oxidation potential than the OER as well as prevent the ClER. Herein, we demonstrate a strategy for replacing the sluggish OER by thermodynamically favorable biomass oxidation for scaling up the electrolysis of alkaline seawater. A xylose electrooxidation reaction (XOR) holds great promise for superseding the OER in seawater electrolysis, which not only simultaneously produces valuable formic acid and hydrogen, but also improves energy utilization. By utilizing NiCoP metal phosphide as the bifunctional electrode, the XOR shows an apparent overpotential reduction of 290 mV at 100 mA cm−2 as compared with the OER in the alkaline seawater electrolyte. Furthermore, the xylose-assisted seawater electrolysis exhibits a high formic acid selectivity of at least 94.6% and a high hydrogen production rate of 150 mL cm−2. This work provides a universal and an effective pathway for hydrogen production from seawater and biomass upgrading.
中文翻译:
通过双功能镍钴磷化物纳米棒整合电催化海水分解和生物质升级
析氧反应(OER)的高过电位和不良的析氯反应(ClER)严重限制了海水电解的制氢效率。有机电氧化反应涉及在限速步骤中具有低键离解能的 C-H 键氧化,可以具有比 OER 更低的氧化电位并防止 ClER。在此,我们展示了一种通过热力学有利的生物质氧化来替代缓慢的 OER 的策略,以扩大碱性海水的电解。木糖电氧化反应 (XOR) 有望在海水电解中取代 OER,它不仅可以同时产生有价值的甲酸和氢气,还可以提高能源利用率。利用NiCoP金属磷化物作为双功能电极,-2与碱性海水电解质中的 OER 相比。此外,木糖辅助海水电解表现出至少94.6%的高甲酸选择性和150mL cm -2的高产氢率。这项工作为海水制氢和生物质升级提供了一条通用且有效的途径。
更新日期:2023-04-19
中文翻译:
通过双功能镍钴磷化物纳米棒整合电催化海水分解和生物质升级
析氧反应(OER)的高过电位和不良的析氯反应(ClER)严重限制了海水电解的制氢效率。有机电氧化反应涉及在限速步骤中具有低键离解能的 C-H 键氧化,可以具有比 OER 更低的氧化电位并防止 ClER。在此,我们展示了一种通过热力学有利的生物质氧化来替代缓慢的 OER 的策略,以扩大碱性海水的电解。木糖电氧化反应 (XOR) 有望在海水电解中取代 OER,它不仅可以同时产生有价值的甲酸和氢气,还可以提高能源利用率。利用NiCoP金属磷化物作为双功能电极,-2与碱性海水电解质中的 OER 相比。此外,木糖辅助海水电解表现出至少94.6%的高甲酸选择性和150mL cm -2的高产氢率。这项工作为海水制氢和生物质升级提供了一条通用且有效的途径。