Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrafine FeF3·0.33H2O Nanocrystal-Doped Graphene Aerogel Cathode Materials for Advanced Lithium-Ion Batteries
Langmuir ( IF 3.7 ) Pub Date : 2023-04-18 , DOI: 10.1021/acs.langmuir.3c00035 Dafang He 1 , Da Cao 1 , Junhong Lu 1 , Ye Zhu 1 , Jie Huang 1 , Yanlin Zhang 1 , Guangyu He 1
Langmuir ( IF 3.7 ) Pub Date : 2023-04-18 , DOI: 10.1021/acs.langmuir.3c00035 Dafang He 1 , Da Cao 1 , Junhong Lu 1 , Ye Zhu 1 , Jie Huang 1 , Yanlin Zhang 1 , Guangyu He 1
Affiliation
FeF3 has been extensively studied as an alternative positive material owing to its superior specific capacity and low cost, but the low conductivity, large volume variation, and slow kinetics seriously hinder its commercialization. Here, we propose the in situ growth of ultrafine FeF3·0.33H2O NPs on a three-dimensional reduced graphene oxide (3D RGO) aerogel with abundant pores by a facile freeze drying process followed by thermal annealing and fluorination. Within the FeF3·0.33H2O/RGO composites, the three-dimensional (3D) RGO aerogel and hierarchical porous structure ensure rapid diffusion of electrons/ions within the cathode, enabling good reversibility of FeF3. Benefiting from these advantages, a superior cycle behavior of 232 mAh g–1 under 0.1C over 100 cycles as well as outstanding rate performance is achieved. These results provide a promising approach for advanced cathode materials for Li-ion batteries.
中文翻译:
用于先进锂离子电池的超细FeF3·0.33H2O纳米晶掺杂石墨烯气凝胶正极材料
FeF 3由于其优越的比容量和低成本而作为替代正极材料得到了广泛研究,但低电导率、大体积变化和慢动力学严重阻碍了其商业化。在这里,我们建议通过简单的冷冻干燥工艺,然后进行热退火和氟化,在具有丰富孔隙的三维还原氧化石墨烯 (3D RGO) 气凝胶上原位生长超细 FeF 3 · 0.33H 2 O NPs。在 FeF 3 ·0.33H 2 O/RGO 复合材料中,三维 (3D) RGO 气凝胶和分层多孔结构确保电子/离子在阴极内快速扩散,从而实现 FeF 3 良好的可逆性. 受益于这些优势,在 0.1C 下超过 100 个循环以及出色的倍率性能实现了232 mAh g –1的卓越循环行为。这些结果为锂离子电池的先进阴极材料提供了一种有前途的方法。
更新日期:2023-04-18
中文翻译:
用于先进锂离子电池的超细FeF3·0.33H2O纳米晶掺杂石墨烯气凝胶正极材料
FeF 3由于其优越的比容量和低成本而作为替代正极材料得到了广泛研究,但低电导率、大体积变化和慢动力学严重阻碍了其商业化。在这里,我们建议通过简单的冷冻干燥工艺,然后进行热退火和氟化,在具有丰富孔隙的三维还原氧化石墨烯 (3D RGO) 气凝胶上原位生长超细 FeF 3 · 0.33H 2 O NPs。在 FeF 3 ·0.33H 2 O/RGO 复合材料中,三维 (3D) RGO 气凝胶和分层多孔结构确保电子/离子在阴极内快速扩散,从而实现 FeF 3 良好的可逆性. 受益于这些优势,在 0.1C 下超过 100 个循环以及出色的倍率性能实现了232 mAh g –1的卓越循环行为。这些结果为锂离子电池的先进阴极材料提供了一种有前途的方法。