Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermoelectric Performance of Surface-Engineered Cu1.5–xTe–Cu2Se Nanocomposites
ACS Nano ( IF 15.8 ) Pub Date : 2023-04-18 , DOI: 10.1021/acsnano.3c00495 Congcong Xing 1, 2 , Yu Zhang 1, 2 , Ke Xiao 1, 3 , Xu Han 4 , Yu Liu 5 , Bingfei Nan 1, 3 , Maria Garcia Ramon 1, 6 , Khak Ho Lim 7 , Junshan Li 8 , Jordi Arbiol 4, 9 , Bed Poudel 2 , Amin Nozariasbmarz 2 , Wenjie Li 2 , Maria Ibáñez 6 , Andreu Cabot 1, 9
ACS Nano ( IF 15.8 ) Pub Date : 2023-04-18 , DOI: 10.1021/acsnano.3c00495 Congcong Xing 1, 2 , Yu Zhang 1, 2 , Ke Xiao 1, 3 , Xu Han 4 , Yu Liu 5 , Bingfei Nan 1, 3 , Maria Garcia Ramon 1, 6 , Khak Ho Lim 7 , Junshan Li 8 , Jordi Arbiol 4, 9 , Bed Poudel 2 , Amin Nozariasbmarz 2 , Wenjie Li 2 , Maria Ibáñez 6 , Andreu Cabot 1, 9
Affiliation
Cu2–xS and Cu2–xSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, Cu2–xTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of Cu1.5–xTe–Cu2Se nanocomposites by consolidating surface-engineered Cu1.5Te nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in Cu1.5–xTe–Cu2Se nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of Cu2Se generated around Cu1.5–xTe nanoparticles effectively inhibits Cu1.5–xTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1.3 at 560 K.
中文翻译:
表面工程化 Cu1.5–xTe–Cu2Se 纳米复合材料的热电性能
Cu 2– x S 和 Cu 2– x Se 最近被报道为用于中温应用的有前途的热电 (TE) 材料。相比之下,铜硫族化物家族的另一个成员Cu 2– x Te 通常表现出较低的塞贝克系数,这限制了其实现卓越热电品质因数zT的潜力,特别是在该材料可能有效的低温范围内. 为了解决这个问题,我们通过整合表面工程化的 Cu 1.5研究了 Cu 1.5– x Te–Cu 2 Se 纳米复合材料的 TE 性能纳米晶体。这种表面工程策略允许精确调整 Cu/Te 比率,并在 Cu 1.5– x Te–Cu 2 Se 纳米复合材料中导致 600 K 左右的可逆相变,这通过原位高温 X 射线衍射结合系统地证实用差示扫描量热法分析。相变导致从类似金属的 TE 特性转变为类似半导体的 TE 特性。此外,在 Cu 1.5– x Te 纳米颗粒周围生成的一层 Cu 2 Se可有效抑制 Cu 1.5– xTe 晶粒生长,最小化热导率并降低空穴浓度。这些特性表明基于碲化铜的化合物具有很有前途的热电势,在 560 K 下转化为 1.3 的高无量纲zT 。
更新日期:2023-04-18
中文翻译:
表面工程化 Cu1.5–xTe–Cu2Se 纳米复合材料的热电性能
Cu 2– x S 和 Cu 2– x Se 最近被报道为用于中温应用的有前途的热电 (TE) 材料。相比之下,铜硫族化物家族的另一个成员Cu 2– x Te 通常表现出较低的塞贝克系数,这限制了其实现卓越热电品质因数zT的潜力,特别是在该材料可能有效的低温范围内. 为了解决这个问题,我们通过整合表面工程化的 Cu 1.5研究了 Cu 1.5– x Te–Cu 2 Se 纳米复合材料的 TE 性能纳米晶体。这种表面工程策略允许精确调整 Cu/Te 比率,并在 Cu 1.5– x Te–Cu 2 Se 纳米复合材料中导致 600 K 左右的可逆相变,这通过原位高温 X 射线衍射结合系统地证实用差示扫描量热法分析。相变导致从类似金属的 TE 特性转变为类似半导体的 TE 特性。此外,在 Cu 1.5– x Te 纳米颗粒周围生成的一层 Cu 2 Se可有效抑制 Cu 1.5– xTe 晶粒生长,最小化热导率并降低空穴浓度。这些特性表明基于碲化铜的化合物具有很有前途的热电势,在 560 K 下转化为 1.3 的高无量纲zT 。