当前位置: X-MOL 学术J. Topol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Segal conjecture for smash powers
Journal of Topology ( IF 0.8 ) Pub Date : 2023-04-11 , DOI: 10.1112/topo.12290
Håkon Schad Bergsaker 1 , John Rognes 1
Affiliation  

We prove that the comparison map from G $G$ -fixed points to G $G$ -homotopy fixed points, for the G $G$ -fold smash power of a bounded below spectrum  B $B$ , becomes an equivalence after p $p$ -completion if G $G$ is a finite p $p$ -group and H ( B ; F p ) $H_*(B; \mathbb {F}_p)$ is of finite type. We also prove that the map becomes an equivalence after I ( G ) $I(G)$ -completion if G $G$ is any finite group and π ( B ) $\pi _*(B)$ is of finite type, where I ( G ) $I(G)$ is the augmentation ideal in the Burnside ring.

中文翻译:

粉碎能力的西格尔猜想

我们证明比较图来自 G $G$ - 固定指向 G $G$ -同伦不动点,对于 G $G$ - 有界以下频谱的折叠粉碎能力  $B$ , 变成等价的 p $p$ -完成如果 G $G$ 是有限的 p $p$ -组和 H ( ; F p ) $H_*(B; \mathbb {F}_p)$ 是有限类型的。我们还证明地图在之后变成等价的 ( G ) $我(G)$ -完成如果 G $G$ 是任何有限群并且 π ( ) $\pi_*(B)$ 是有限类型,其中 ( G ) $我(G)$ 是 Burnside 环中的增强理想。
更新日期:2023-04-11
down
wechat
bug