Seed Science Research ( IF 2.1 ) Pub Date : 2023-04-17 , DOI: 10.1017/s0960258523000107 Carol C. Baskin , Jerry M. Baskin
The Asteraceae with up to 30,000 species occurs on all continents except Antarctica and in all major vegetation zones on earth. Our primary aim was to consider cypselae dormancy-break and germination of Asteraceae in relation to ecology, vegetation zones and evolution. Cypselae are desiccation-tolerant and in various tribes, genera, species and life forms of Asteraceae are either non-dormant (ND) or have non-deep physiological dormancy (PD) at maturity. All six types of non-deep PD are found among the Asteraceae, and dormancy is broken by cold or warm stratification or by afterripening. Soil cypselae banks may be formed but mostly are short-lived. Much within-species variation in dormancy-break and germination has been found. Using data compiled for 1192 species in 373 genera and 35 tribes of Asteraceae, we considered ND and PD in relation to life form, vegetation zone and tribe. Senecioneae and Astereae had the best representation across the vegetation zones on earth. In evergreen and semi-evergreen rainforests, more species have ND than PD, but in all other vegetation zones, except alpine/high-latitude tundra (where ND and PD are equal), more species have PD than ND. Tribes in the basal and central grades and those in the Heliantheae Alliance have both ND and PD. The high diversity and lability of non-deep PD may have enhanced the rate of species diversification by promoting the survival of new species and/or species in new habitats that became available following globally disruptive events since the origin of the Asteraceae in the Late Cretaceous.
中文翻译:
菊科种子休眠:全球植被区和分类学/系统发育评估
菊科植物多达30,000种,分布于除南极洲以外的所有大陆和地球上所有主要植被带。我们的主要目的是考虑菊科植物的休眠打破和萌发与生态、植被区和进化的关系。菊科植物具有耐干燥性,并且在菊科的各个部落、属、种和生命形式中,成熟时要么是非休眠(ND),要么是非深度生理休眠(PD)。所有六种非深部PD都在菊科植物中发现,休眠被冷或暖层积或后熟打破。土壤土库可能会形成,但大多是短暂的。已发现休眠打破和发芽方面的许多种内差异。使用为菊科 373 属和 35 个部落的 1192 个物种编制的数据,我们考虑了ND和PD与生命形式、植被区和部落的关系。千里光科和紫苑科在地球上的植被带中具有最好的代表性。在常绿和半常绿雨林中,ND 物种多于 PD 物种,但在所有其他植被区,除高山/高纬苔原(ND 和 PD 相等)外,PD 物种多于 ND 物种。基础、中央等级的部落以及向日葵联盟的部落同时拥有ND和PD。非深部PD的高度多样性和不稳定性可能通过促进新物种和/或新栖息地中物种的生存来提高物种多样化的速度,这些新栖息地是自白垩纪晚期菊科起源以来全球破坏性事件之后出现的。千里光科和紫苑科在地球上的植被带中具有最好的代表性。在常绿和半常绿雨林中,ND 物种多于 PD 物种,但在所有其他植被区,除高山/高纬苔原(ND 和 PD 相等)外,PD 物种多于 ND 物种。基础、中央等级的部落以及向日葵联盟的部落同时拥有ND和PD。非深部PD的高度多样性和不稳定性可能通过促进新物种和/或新栖息地中物种的生存来提高物种多样化的速度,这些新栖息地是自白垩纪晚期菊科起源以来全球破坏性事件之后出现的。千里光科和紫苑科在地球上的植被带中具有最好的代表性。在常绿和半常绿雨林中,ND 物种多于 PD 物种,但在所有其他植被区,除高山/高纬苔原(ND 和 PD 相等)外,PD 物种多于 ND 物种。基础、中央等级的部落以及向日葵联盟的部落同时拥有ND和PD。非深部PD的高度多样性和不稳定性可能通过促进新物种和/或新栖息地中物种的生存来提高物种多样化的速度,这些新栖息地是自白垩纪晚期菊科起源以来全球破坏性事件之后出现的。除高山/高纬度苔原(ND 和 PD 相等)外,PD 物种多于 ND 物种。基础、中央等级的部落以及向日葵联盟的部落同时拥有ND和PD。非深部PD的高度多样性和不稳定性可能通过促进新物种和/或新栖息地中物种的生存来提高物种多样化的速度,这些新栖息地是自白垩纪晚期菊科起源以来全球破坏性事件之后出现的。除高山/高纬度苔原(ND 和 PD 相等)外,PD 物种多于 ND 物种。基础、中央等级的部落以及向日葵联盟的部落同时拥有ND和PD。非深部PD的高度多样性和不稳定性可能通过促进新物种和/或新栖息地中物种的生存来提高物种多样化的速度,这些新栖息地是自白垩纪晚期菊科起源以来全球破坏性事件之后出现的。