当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boosting CO2 Electroreduction on Bismuth Nanoplates with a Three-Dimensional Nitrogen-Doped Graphene Aerogel Matrix
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-04-14 , DOI: 10.1021/acsami.3c02578
Xiao-Ting Jing 1 , Zhejiaji Zhu 1 , Li-Wei Chen 1 , Di Liu 1 , Hui-Zi Huang 1 , Wen-Jing Tian 1 , An-Xiang Yin 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-04-14 , DOI: 10.1021/acsami.3c02578
Xiao-Ting Jing 1 , Zhejiaji Zhu 1 , Li-Wei Chen 1 , Di Liu 1 , Hui-Zi Huang 1 , Wen-Jing Tian 1 , An-Xiang Yin 1
Affiliation
![]() |
Electrochemical CO2 reduction reaction (CO2RR), which uses renewable electricity to produce high-value-added chemicals, offers an alternative clean path to the carbon cycle. However, bismuth-based catalysts show great potential for the conversion of CO2 and water to formate, but their overall efficiency is still hampered by the weak CO2 adsorption, low electrical conductivity, and slow mass transfer of CO2 molecules. Herein, we report that a rationally modulated nitrogen-doped graphene aerogel matrix (NGA) can significantly enhance the CO2RR performance of bismuth nanoplates (BiNPs) by both modulating the electronic structure of bismuth and regulating the interface for chemical reaction and mass transfer environments. In particular, the NGA prepared by reducing graphene oxide (GO) with hydrazine hydrate (denoted as NGAhdrz) exhibits significantly enhanced strong metal–support interaction (SMSI), increased specific surface area, strengthened CO2 adsorption, and modulated wettability. As a result, the Bi/NGAhdrz exhibits significantly boosted CO2RR properties, with a Faradaic efficiency (FE) of 96.4% at a current density of 51.4 mA cm–2 for formate evolution at a potential of −1.0 V versus reversible hydrogen electrode (vs RHE) in aqueous solution under ambient conditions.
中文翻译:
用三维氮掺杂石墨烯气凝胶基质促进铋纳米板上的 CO2 电还原
电化学 CO 2还原反应 (CO 2 RR) 使用可再生电力生产高附加值化学品,为碳循环提供了一条替代清洁途径。然而,铋基催化剂在将 CO 2和水转化为甲酸盐方面显示出巨大的潜力,但它们的整体效率仍然受到 CO 2弱吸附、低电导率和 CO 2分子传质缓慢的阻碍。在此,我们报道了合理调制的氮掺杂石墨烯气凝胶基质 (NGA) 可以显着提高 CO 2通过调节铋的电子结构和调节化学反应和传质环境的界面,铋纳米板 (BiNP) 的 RR 性能。特别是,通过用水合肼还原氧化石墨烯 (GO) 制备的 NGA(表示为 NGA hdrz)表现出显着增强的强金属-载体相互作用 (SMSI)、增加的比表面积、增强的 CO 2吸附和可调节的润湿性。因此,Bi/NGA hdrz表现出显着增强的 CO 2 RR 特性,在 51.4 mA cm –2的电流密度下法拉第效率 (FE) 为 96.4%在环境条件下在水溶液中相对于可逆氢电极(相对于 RHE)在 -1.0 V 的电位下形成甲酸盐。
更新日期:2023-04-14
中文翻译:

用三维氮掺杂石墨烯气凝胶基质促进铋纳米板上的 CO2 电还原
电化学 CO 2还原反应 (CO 2 RR) 使用可再生电力生产高附加值化学品,为碳循环提供了一条替代清洁途径。然而,铋基催化剂在将 CO 2和水转化为甲酸盐方面显示出巨大的潜力,但它们的整体效率仍然受到 CO 2弱吸附、低电导率和 CO 2分子传质缓慢的阻碍。在此,我们报道了合理调制的氮掺杂石墨烯气凝胶基质 (NGA) 可以显着提高 CO 2通过调节铋的电子结构和调节化学反应和传质环境的界面,铋纳米板 (BiNP) 的 RR 性能。特别是,通过用水合肼还原氧化石墨烯 (GO) 制备的 NGA(表示为 NGA hdrz)表现出显着增强的强金属-载体相互作用 (SMSI)、增加的比表面积、增强的 CO 2吸附和可调节的润湿性。因此,Bi/NGA hdrz表现出显着增强的 CO 2 RR 特性,在 51.4 mA cm –2的电流密度下法拉第效率 (FE) 为 96.4%在环境条件下在水溶液中相对于可逆氢电极(相对于 RHE)在 -1.0 V 的电位下形成甲酸盐。