当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Realizing High Capacity and Zero Strain in Layered Oxide Cathodes via Lithium Dual-Site Substitution for Sodium-Ion Batteries
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-04-14 , DOI: 10.1021/jacs.3c00117 Zhonghan Wu 1 , Youxuan Ni 1 , Sha Tan 2 , Enyuan Hu 2 , Lunhua He 3, 4, 5 , Jiuding Liu 1 , Machuan Hou 1 , Peixin Jiao 1 , Kai Zhang 1, 6 , Fangyi Cheng 1, 6 , Jun Chen 1, 6
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-04-14 , DOI: 10.1021/jacs.3c00117 Zhonghan Wu 1 , Youxuan Ni 1 , Sha Tan 2 , Enyuan Hu 2 , Lunhua He 3, 4, 5 , Jiuding Liu 1 , Machuan Hou 1 , Peixin Jiao 1 , Kai Zhang 1, 6 , Fangyi Cheng 1, 6 , Jun Chen 1, 6
Affiliation
Sodium-ion batteries have garnered unprecedented attention as an electrochemical energy storage technology, but it remains challenging to design high-energy-density cathode materials with low structural strain during the dynamic (de)sodiation processes. Herein, we report a P2-layered lithium dual-site-substituted Na0.7Li0.03[Mg0.15Li0.07Mn0.75]O2 (NMLMO) cathode material, in which Li ions occupy both transition-metal (TM) and alkali-metal (AM) sites. The combination of theoretical calculations and experimental characterizations reveals that LiTM creates Na–O–Li electronic configurations to boost the capacity derived from the oxygen anionic redox, while LiAM serves as LiO6 prismatic pillars to stabilize the layered structure through suppressing the detrimental phase transitions. As a result, NMLMO delivers a high specific capacity of 266 mAh g–1 and simultaneously exhibits the nearly zero-strain characteristic within a wide voltage range of 1.5–4.6 V. Our findings highlight the effective way of dual-site substitution to break the capacity–stability trade-off in cathode materials for advanced rechargeable batteries.
中文翻译:
通过锂双位点替代钠离子电池实现层状氧化物阴极的高容量和零应变
钠离子电池作为一种电化学储能技术受到了前所未有的关注,但在动态(去)钠化过程中设计具有低结构应变的高能量密度正极材料仍然具有挑战性。在此,我们报道了一种 P2 层状锂双位点取代的 Na 0.7 Li 0.03 [Mg 0.15 Li 0.07 Mn 0.75 ]O 2 (NMLMO) 正极材料,其中 Li 离子同时占据过渡金属 (TM) 和碱金属(上午) 网站。理论计算和实验表征相结合表明,Li TM创造了 Na-O-Li 电子构型,以提高源自氧阴离子氧化还原的容量,而 LiAM用作 LiO 6棱柱,通过抑制有害的相变来稳定层状结构。因此,NMLMO 提供了 266 mAh g -1的高比容量,同时在 1.5-4.6 V 的宽电压范围内表现出几乎为零的应变特性。我们的研究结果强调了双位点替代打破先进可充电电池阴极材料的容量-稳定性权衡。
更新日期:2023-04-14
中文翻译:
通过锂双位点替代钠离子电池实现层状氧化物阴极的高容量和零应变
钠离子电池作为一种电化学储能技术受到了前所未有的关注,但在动态(去)钠化过程中设计具有低结构应变的高能量密度正极材料仍然具有挑战性。在此,我们报道了一种 P2 层状锂双位点取代的 Na 0.7 Li 0.03 [Mg 0.15 Li 0.07 Mn 0.75 ]O 2 (NMLMO) 正极材料,其中 Li 离子同时占据过渡金属 (TM) 和碱金属(上午) 网站。理论计算和实验表征相结合表明,Li TM创造了 Na-O-Li 电子构型,以提高源自氧阴离子氧化还原的容量,而 LiAM用作 LiO 6棱柱,通过抑制有害的相变来稳定层状结构。因此,NMLMO 提供了 266 mAh g -1的高比容量,同时在 1.5-4.6 V 的宽电压范围内表现出几乎为零的应变特性。我们的研究结果强调了双位点替代打破先进可充电电池阴极材料的容量-稳定性权衡。