当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Green Environmentally Friendly “Zn(CH3SO3)2” Electrolyte for Aqueous Zinc-Ion Batteries
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-04-12 , DOI: 10.1021/acsami.3c00521
Chaohua Sun 1 , Rui Miao 1 , Jipeng Li 1 , Yanzhi Sun 1 , Yongmei Chen 1 , Junqing Pan 2 , Yang Tang 1 , Pingyu Wan 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-04-12 , DOI: 10.1021/acsami.3c00521
Chaohua Sun 1 , Rui Miao 1 , Jipeng Li 1 , Yanzhi Sun 1 , Yongmei Chen 1 , Junqing Pan 2 , Yang Tang 1 , Pingyu Wan 1
Affiliation
![]() |
Aqueous zinc-ion batteries are considered as an ideal substitute for lithium-ion batteries due to their abundant resource storage, high safety, and low price. However, zinc anodes exhibit poor reversibility and cyclic stability in most conventional aqueous electrolytes. Herein, an environmentally friendly Zn(CH3SO3)2 electrolyte is proposed to solve the problems of common aqueous electrolytes. The bulky CH3SO3– anions can regulate the solvation structure of Zn2+ by replacing some water molecules in the primary solvation sheath of Zn2+, thus slowing the hydrogen evolution side reactions and formation of zinc dendrite. Additionally, the changing solvation structure weakens the bonding between Zn2+ and the surrounding water molecules, which is conducive to the transport and charge transfer of Zn2+, thus improving the battery capacity. In the Zn(CH3SO3)2 electrolyte, Zn plating/stripping exhibits a high Coulombic efficiency of >98% and long-term cyclic stability over 800 h. The specific capacity of the assembled Zn//V2O5 cell in 3 mol L–1 Zn(CH3SO3)2 reaches 350 mA h g–1 at 0.1 A g–1, much higher than that in the ZnSO4 electrolyte (213 mA h g–1). In conclusion, this work offers insights into the exploration of advanced green electrolyte systems for zinc-ion batteries.
中文翻译:
水系锌离子电池用绿色环保“Zn(CH3SO3)2”电解液
水系锌离子电池具有资源储量丰富、安全性高、价格低廉等优点,被认为是锂离子电池的理想替代品。然而,锌阳极在大多数传统水性电解质中表现出较差的可逆性和循环稳定性。在此,提出了一种环境友好的 Zn(CH 3 SO 3 ) 2电解质来解决普通水系电解质的问题。大体积的CH 3 SO 3 -阴离子可以通过置换Zn 2+初级溶剂化鞘中的部分水分子来调节Zn 2+的溶剂化结构,从而减缓析氢副反应和锌枝晶的形成。此外,改变的溶剂化结构削弱了Zn 2+与周围水分子之间的键合,有利于Zn 2+的传输和电荷转移,从而提高电池容量。在Zn(CH 3 SO 3 ) 2电解质中,Zn 电镀/剥离表现出>98% 的高库仑效率和超过800 小时的长期循环稳定性。组装的Zn//V 2 O 5电池在3 mol L –1 Zn(CH 3 SO 3 ) 2中的比容量达到350 mA hg –1在 0.1 A g –1时,远高于 ZnSO 4电解质 (213 mA hg –1 )。总之,这项工作为探索用于锌离子电池的先进绿色电解质系统提供了见解。
更新日期:2023-04-12
中文翻译:

水系锌离子电池用绿色环保“Zn(CH3SO3)2”电解液
水系锌离子电池具有资源储量丰富、安全性高、价格低廉等优点,被认为是锂离子电池的理想替代品。然而,锌阳极在大多数传统水性电解质中表现出较差的可逆性和循环稳定性。在此,提出了一种环境友好的 Zn(CH 3 SO 3 ) 2电解质来解决普通水系电解质的问题。大体积的CH 3 SO 3 -阴离子可以通过置换Zn 2+初级溶剂化鞘中的部分水分子来调节Zn 2+的溶剂化结构,从而减缓析氢副反应和锌枝晶的形成。此外,改变的溶剂化结构削弱了Zn 2+与周围水分子之间的键合,有利于Zn 2+的传输和电荷转移,从而提高电池容量。在Zn(CH 3 SO 3 ) 2电解质中,Zn 电镀/剥离表现出>98% 的高库仑效率和超过800 小时的长期循环稳定性。组装的Zn//V 2 O 5电池在3 mol L –1 Zn(CH 3 SO 3 ) 2中的比容量达到350 mA hg –1在 0.1 A g –1时,远高于 ZnSO 4电解质 (213 mA hg –1 )。总之,这项工作为探索用于锌离子电池的先进绿色电解质系统提供了见解。
