Nature Communications ( IF 14.7 ) Pub Date : 2023-04-12 , DOI: 10.1038/s41467-023-37707-2 Vaithinathan Karthikeyan 1, 2 , James Utama Surjadi 3, 4 , Xiaocui Li 3 , Rong Fan 3 , Vaskuri C S Theja 1, 2 , Wen Jung Li 3 , Yang Lu 3, 4, 5 , Vellaisamy A L Roy 6
For decades, the widespread application of thermoelectric generators has been plagued by two major limitations: heat stagnation in its legs, which limits power conversion efficiency, and inherent brittleness of its constituents, which accelerates thermoelectric generator failure. While notable progress has been made to overcome these quintessential flaws, the state-of-the-art suffers from an apparent mismatch between thermoelectric performance and mechanical toughness. Here, we demonstrate an approach to potentially enhance the power conversion efficiency while suppressing the brittle failure in thermoelectric materials. By harnessing the enhanced thermal impedance induced by the cellular architecture of microlattices with the exceptional strength and ductility (>50% compressive strain) derived from partial carbonization, we fabricate three-dimensional (3D) architected thermoelectric generators that exhibit a specific energy absorption of ~30 J g−1 and power conversion efficiency of ~10%. We hope our work will improve future thermoelectric generator fabrication design through additive manufacturing with excellent thermoelectric properties and mechanical robustness.
中文翻译:
具有高韧性和功率转换效率的三维结构热电器件
几十年来,热电发电机的广泛应用一直受到两大限制的困扰:其腿部的热停滞限制了功率转换效率,其成分固有的脆性加速了热电发电机的故障。虽然在克服这些典型缺陷方面取得了显着进展,但最先进的技术仍存在热电性能与机械韧性之间明显不匹配的问题。在这里,我们展示了一种可能提高功率转换效率同时抑制热电材料脆性失效的方法。通过利用微晶格的蜂窝结构引起的热阻抗增强,以及部分碳化产生的卓越强度和延展性(>50% 压缩应变),−1和~10% 的功率转换效率。我们希望我们的工作将通过具有出色热电性能和机械鲁棒性的增材制造来改进未来的热电发电机制造设计。