当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
2D VOPO4 Pseudocapacitive Ultrafast-Charging Cathode with Multi-Electron Chemistry for High-Energy and High-Power Solid-State Lithium Metal Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-04-09 , DOI: 10.1002/aenm.202204015
Feifei Xing 1, 2 , Feng Su 1, 2 , Jieqiong Qin 3 , Pengchao Wen 1 , Yuejiao Li 1, 2 , Liangzhu Zhang 1 , Jiaxin Ma 1, 2 , Shuanghao Zheng 1, 4 , Xin Guo 1, 4 , Zhong‐Shuai Wu 1, 4
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2023-04-09 , DOI: 10.1002/aenm.202204015
Feifei Xing 1, 2 , Feng Su 1, 2 , Jieqiong Qin 3 , Pengchao Wen 1 , Yuejiao Li 1, 2 , Liangzhu Zhang 1 , Jiaxin Ma 1, 2 , Shuanghao Zheng 1, 4 , Xin Guo 1, 4 , Zhong‐Shuai Wu 1, 4
Affiliation
![]() |
Lithium metal batteries (LMBs) are acknowledged to be one major direction for next-generation energy storage devices. However, the practical applications of LMBs are certainly limited by the low power density and safety issues owing to the lack of high-capacity pseudocapacitive cathode materials and solid electrolytes. Herein, the rational synthesis of 2D VOPO4 nanosheets with enriched V4+ defects (VOPO4@G-Air) enabling ultrafast multi-electron reactions as a high-capacity pseudocapacitive cathode is reported. Through V4+ defect engineering, the larger polarizationand inhomogeneous multi-electron reactions are vastly improved, resulting in remarkably fast kinetics. Benefiting from the ultrathin 2D structure and controllably regulated V4+ defect concentration, a high discharge capacity of 313 mA h g−1at 0.1C is achieved, anda large capacity of 116 mA h g−1 is offered at 50C. Finally, utilizing the as-synthesized VOPO4@G-Air and a solid-state electrolyte based on ethoxylated trimethylolpropane triacrylate (ETPTA-LiClO4-SSE) , the assembled solid-state LMBs (Li||ETPTA-LiClO4-SSE||VOPO4) show high energy density of 85.4 Wh kg−1 at 114.5 W kg−1 and high power density of 2.3 kW kg−1 at 45.86 Wh kg−1. Further, the pouch cell unveils extraordinary safety and excellent flexibility. This work provides new insights in the construction of ultrafast and high-capacity pseudocapacitive cathodes with multi-electron reactions for solid-state LMBs.
中文翻译:
用于高能大功率固态锂金属电池的多电子化学二维 VOPO4 赝电容超快充电阴极
锂金属电池(LMBs)被公认为是下一代储能设备的主要方向之一。然而,由于缺乏高容量赝电容性正极材料和固体电解质,LMBs 的实际应用受到低功率密度和安全问题的限制。在此,报道了具有富集 V 4+缺陷的二维 VOPO 4纳米片(VOPO 4 @G-Air)的合理合成,可作为高容量赝电容性阴极实现超快多电子反应。通过V 4+缺陷工程,更大的极化和不均匀的多电子反应得到了极大的改善,从而导致非常快的动力学。得益于超薄二维结构和可控调节的V 4+缺陷浓度,在0.1C时实现了313 mA hg -1的高放电容量,在50C时提供了116 mA hg -1的大容量。最后,利用合成后的 VOPO 4 @G-Air 和基于乙氧基化三羟甲基丙烷三丙烯酸酯 (ETPTA-LiClO 4 -SSE)的固态电解质,组装固态 LMBs (Li||ETPTA-LiClO 4 -SSE| |VOPO 4 )在 114.5 W kg 时显示出 85.4 Wh kg −1的高能量密度-1和 2.3 kW kg -1的高功率密度在 45.86 Wh kg -1。此外,软包电池还具有非凡的安全性和出色的灵活性。这项工作为固态 LMB 的多电子反应超快和高容量赝电容阴极的构建提供了新的见解。
更新日期:2023-04-09
中文翻译:

用于高能大功率固态锂金属电池的多电子化学二维 VOPO4 赝电容超快充电阴极
锂金属电池(LMBs)被公认为是下一代储能设备的主要方向之一。然而,由于缺乏高容量赝电容性正极材料和固体电解质,LMBs 的实际应用受到低功率密度和安全问题的限制。在此,报道了具有富集 V 4+缺陷的二维 VOPO 4纳米片(VOPO 4 @G-Air)的合理合成,可作为高容量赝电容性阴极实现超快多电子反应。通过V 4+缺陷工程,更大的极化和不均匀的多电子反应得到了极大的改善,从而导致非常快的动力学。得益于超薄二维结构和可控调节的V 4+缺陷浓度,在0.1C时实现了313 mA hg -1的高放电容量,在50C时提供了116 mA hg -1的大容量。最后,利用合成后的 VOPO 4 @G-Air 和基于乙氧基化三羟甲基丙烷三丙烯酸酯 (ETPTA-LiClO 4 -SSE)的固态电解质,组装固态 LMBs (Li||ETPTA-LiClO 4 -SSE| |VOPO 4 )在 114.5 W kg 时显示出 85.4 Wh kg −1的高能量密度-1和 2.3 kW kg -1的高功率密度在 45.86 Wh kg -1。此外,软包电池还具有非凡的安全性和出色的灵活性。这项工作为固态 LMB 的多电子反应超快和高容量赝电容阴极的构建提供了新的见解。