当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Achieving Practical High-Energy-Density Lithium-Metal Batteries by a Dual-Anion Regulated Electrolyte
Advanced Materials ( IF 27.4 ) Pub Date : 2023-04-07 , DOI: 10.1002/adma.202301171 Hai Su 1 , Zifeng Chen 1 , Mengjie Li 1 , Panxing Bai 1 , Yong Li 2 , Xiao Ji 3 , Ziqiang Liu 4 , Jie Sun 5 , Jia Ding 1 , Ming Yang 6 , Xiayin Yao 4 , Chong Mao 7 , Yunhua Xu 1
Advanced Materials ( IF 27.4 ) Pub Date : 2023-04-07 , DOI: 10.1002/adma.202301171 Hai Su 1 , Zifeng Chen 1 , Mengjie Li 1 , Panxing Bai 1 , Yong Li 2 , Xiao Ji 3 , Ziqiang Liu 4 , Jie Sun 5 , Jia Ding 1 , Ming Yang 6 , Xiayin Yao 4 , Chong Mao 7 , Yunhua Xu 1
Affiliation
Lithium-metal batteries (LMBs) using lithium-metal anodes and high-voltage cathodes have been deemed as one of the most promising high-energy-density battery technology. However, its practical application is largely hindered by the notorious dendrite growth of lithium-metal anodes, the fast structure degradation of the cathode, and insufficient electrode–electrolyte interphase kinetics. Here, a dual-anion regulated electrolyte is developed for LMBs using lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and lithium difluoro(bisoxalato)phosphate (LiDFBOP) as anion regulators. The incorporation of TFSI− in the solvation sheath reduces the desolvation energy of Li+, and DFBOP− promotes the formation of highly ion-conductive and sustainable inorganic-rich interphases on the electrodes. Significantly enhanced performance is demonstrated on Li||LiNi0.83Co0.11Mn0.06O2 pouch cells, with 84.6% capacity retention after 150 cycles in 6.0 Ah pouch cells and an ultrahigh rate capability up to 5 C in 2.0 Ah pouch cells. Furthermore, a pouch cell with an ultralarge capacity of 39.0 Ah is fabricated and achieves an ultrahigh energy density of 521.3 Wh kg−1. The findings provide a facile electrolyte design strategy for promoting the practical utilization of high-energy-density LMBs.
中文翻译:
通过双阴离子调节电解质实现实用的高能量密度锂金属电池
使用锂金属阳极和高压阴极的锂金属电池(LMB)被认为是最有前途的高能量密度电池技术之一。然而,其实际应用在很大程度上受到锂金属阳极臭名昭著的枝晶生长、阴极结构快速降解以及电极-电解质界面动力学不足的阻碍。这里,使用双(三氟甲基磺酰基)亚胺锂(LiTFSI)和二氟(双草酸)磷酸锂(LiDFBOP)作为阴离子调节剂,为LMB开发了双阴离子调节电解质。溶剂化鞘中加入 TFSI -降低了 Li +的去溶剂化能,而 DFBOP -促进了电极上高离子传导性和可持续的富含无机界面的形成。Li||LiNi 0.83 Co 0.11 Mn 0.06 O 2软包电池的性能显着增强,在 6.0 Ah 软包电池中循环 150 次后容量保持率为 84.6%,在 2.0 Ah 软包电池中具有高达 5 C 的超高倍率能力。此外,还制造了具有39.0 Ah超大容量的软包电池,并实现了521.3 Wh kg -1的超高能量密度。研究结果为促进高能量密度LMB的实际应用提供了一种简便的电解质设计策略。
更新日期:2023-04-07
中文翻译:
通过双阴离子调节电解质实现实用的高能量密度锂金属电池
使用锂金属阳极和高压阴极的锂金属电池(LMB)被认为是最有前途的高能量密度电池技术之一。然而,其实际应用在很大程度上受到锂金属阳极臭名昭著的枝晶生长、阴极结构快速降解以及电极-电解质界面动力学不足的阻碍。这里,使用双(三氟甲基磺酰基)亚胺锂(LiTFSI)和二氟(双草酸)磷酸锂(LiDFBOP)作为阴离子调节剂,为LMB开发了双阴离子调节电解质。溶剂化鞘中加入 TFSI -降低了 Li +的去溶剂化能,而 DFBOP -促进了电极上高离子传导性和可持续的富含无机界面的形成。Li||LiNi 0.83 Co 0.11 Mn 0.06 O 2软包电池的性能显着增强,在 6.0 Ah 软包电池中循环 150 次后容量保持率为 84.6%,在 2.0 Ah 软包电池中具有高达 5 C 的超高倍率能力。此外,还制造了具有39.0 Ah超大容量的软包电池,并实现了521.3 Wh kg -1的超高能量密度。研究结果为促进高能量密度LMB的实际应用提供了一种简便的电解质设计策略。