Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nanoengineering Ultrathin Flexible Pressure Sensor with Superior Sensitivity and Perfect Conformability
Small ( IF 13.0 ) Pub Date : 2023-04-07 , DOI: 10.1002/smll.202208015 Xiaoguang Hu 1, 2 , Mengxi Wu 1, 2 , Lixuan Che 3 , Jian Huang 1, 2 , Haoran Li 1, 2 , Zehan Liu 1, 2 , Ming Li 3 , Dong Ye 4 , Zhuoqing Yang 5 , Xuewen Wang 6 , Zhaoqian Xie 7 , Junshan Liu 1, 2
Small ( IF 13.0 ) Pub Date : 2023-04-07 , DOI: 10.1002/smll.202208015 Xiaoguang Hu 1, 2 , Mengxi Wu 1, 2 , Lixuan Che 3 , Jian Huang 1, 2 , Haoran Li 1, 2 , Zehan Liu 1, 2 , Ming Li 3 , Dong Ye 4 , Zhuoqing Yang 5 , Xuewen Wang 6 , Zhaoqian Xie 7 , Junshan Liu 1, 2
Affiliation
Flexible pressure sensors play an increasingly important role in a wide range of applications such as human health monitoring, soft robotics, and human–machine interfaces. To achieve a high sensitivity, a conventional approach is introducing microstructures to engineer the internal geometry of the sensor. However, this microengineering strategy requires the sensor's thickness to be typically at hundreds to thousands of microns level, impairing the sensor's conformability on surfaces with microscale roughness like human skin. In this manuscript, a nanoengineering strategy is pioneered that paves a path to resolve the conflicts between sensitivity and conformability. A dual-sacrificial-layer method is initiated that facilitates ease of fabrication and precise assembly of two functional nanomembranes to manufacture the thinnest resistive pressure sensor with a total thickness of ≈850 nm that achieves perfectly conformable contact to human skin. For the first time, the superior deformability of the nanothin electrode layer on a carbon nanotube conductive layer is utilized by the authors to achieve a superior sensitivity (92.11 kPa−1) and an ultralow detection limit (<0.8 Pa). This work offers a new strategy that is able to overcome a key bottleneck for current pressure sensors, therefore is of potential to inspire the research community for a new wave of breakthroughs.
中文翻译:
具有卓越灵敏度和完美顺应性的纳米工程超薄柔性压力传感器
柔性压力传感器在人体健康监测、软机器人和人机界面等广泛应用中发挥着越来越重要的作用。为了实现高灵敏度,传统方法是引入微结构来设计传感器的内部几何形状。然而,这种微工程策略要求传感器的厚度通常为数百至数千微米级别,从而损害了传感器在人体皮肤等具有微米级粗糙度的表面上的一致性。在这份手稿中,开创了一种纳米工程策略,为解决敏感性和顺应性之间的冲突铺平了道路。首创的双牺牲层方法有利于两种功能纳米膜的制造和精确组装,从而制造出总厚度约为 850 nm 的最薄电阻式压力传感器,可实现与人体皮肤的完美贴合接触。作者首次利用碳纳米管导电层上的纳米薄电极层的优异变形能力实现了优异的灵敏度(92.11 kPa -1 )和超低的检测限(<0.8 Pa)。这项工作提供了一种新策略,能够克服当前压力传感器的关键瓶颈,因此有可能激发研究界新一波的突破。
更新日期:2023-04-07
中文翻译:
具有卓越灵敏度和完美顺应性的纳米工程超薄柔性压力传感器
柔性压力传感器在人体健康监测、软机器人和人机界面等广泛应用中发挥着越来越重要的作用。为了实现高灵敏度,传统方法是引入微结构来设计传感器的内部几何形状。然而,这种微工程策略要求传感器的厚度通常为数百至数千微米级别,从而损害了传感器在人体皮肤等具有微米级粗糙度的表面上的一致性。在这份手稿中,开创了一种纳米工程策略,为解决敏感性和顺应性之间的冲突铺平了道路。首创的双牺牲层方法有利于两种功能纳米膜的制造和精确组装,从而制造出总厚度约为 850 nm 的最薄电阻式压力传感器,可实现与人体皮肤的完美贴合接触。作者首次利用碳纳米管导电层上的纳米薄电极层的优异变形能力实现了优异的灵敏度(92.11 kPa -1 )和超低的检测限(<0.8 Pa)。这项工作提供了一种新策略,能够克服当前压力传感器的关键瓶颈,因此有可能激发研究界新一波的突破。