当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Data-driven analysis to understand long COVID using electronic health records from the RECOVER initiative
Nature Communications ( IF 14.7 ) Pub Date : 2023-04-07 , DOI: 10.1038/s41467-023-37653-z
Chengxi Zang 1 , Yongkang Zhang 1 , Jie Xu 2 , Jiang Bian 2 , Dmitry Morozyuk 1 , Edward J Schenck 3 , Dhruv Khullar 1 , Anna S Nordvig 4 , Elizabeth A Shenkman 2 , Russell L Rothman 5 , Jason P Block 6 , Kristin Lyman 7 , Mark G Weiner 1 , Thomas W Carton 7 , Fei Wang 1 , Rainu Kaushal 1
Affiliation  

Recent studies have investigated post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) using real-world patient data such as electronic health records (EHR). Prior studies have typically been conducted on patient cohorts with specific patient populations which makes their generalizability unclear. This study aims to characterize PASC using the EHR data warehouses from two large Patient-Centered Clinical Research Networks (PCORnet), INSIGHT and OneFlorida+, which include 11 million patients in New York City (NYC) area and 16.8 million patients in Florida respectively. With a high-throughput screening pipeline based on propensity score and inverse probability of treatment weighting, we identified a broad list of diagnoses and medications which exhibited significantly higher incidence risk for patients 30–180 days after the laboratory-confirmed SARS-CoV-2 infection compared to non-infected patients. We identified more PASC diagnoses in NYC than in Florida regarding our screening criteria, and conditions including dementia, hair loss, pressure ulcers, pulmonary fibrosis, dyspnea, pulmonary embolism, chest pain, abnormal heartbeat, malaise, and fatigue, were replicated across both cohorts. Our analyses highlight potentially heterogeneous risks of PASC in different populations.



中文翻译:

使用来自 RECOVER 计划的电子健康记录进行数据驱动分析以了解长期 COVID

最近的研究使用电子健康记录 (EHR) 等真实世界患者数据调查了 SARS-CoV-2 感染(PASC,或长 COVID)的急性后遗症。先前的研究通常是针对具有特定患者群体的患者队列进行的,这使得它们的普遍性尚不清楚。本研究旨在使用来自两个大型以患者为中心的临床研究网络 (PCORnet)、INSIGHT 和 OneFlorida+ 的 EHR 数据仓库来表征 PASC,这两个网络分别包括纽约市 (NYC) 地区的 1100 万患者和佛罗里达州的 1680 万患者。使用基于倾向得分和治疗加权逆概率的高通量筛选流程,我们确定了一份广泛的诊断和药物清单,与未感染的患者相比,在实验室确认的 SARS-CoV-2 感染后 30-180 天,这些诊断和药物对患者的发病风险显着更高。根据我们的筛选标准,我们在纽约市确定了比佛罗里达州更多的 PASC 诊断,并且在两个队列中重复了包括痴呆、脱发、压力性溃疡、肺纤维化、呼吸困难、肺栓塞、胸痛、异常心跳、不适和疲劳在内的病症. 我们的分析强调了不同人群中 PASC 的潜在异质性风险。肺栓塞、胸痛、心跳异常、不适和疲劳在两个队列中重复出现。我们的分析强调了不同人群中 PASC 的潜在异质性风险。肺栓塞、胸痛、心跳异常、不适和疲劳在两个队列中重复出现。我们的分析强调了不同人群中 PASC 的潜在异质性风险。

更新日期:2023-04-08
down
wechat
bug