当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controlled Hierarchical Self-Assembly of Nanoparticles and Chiral Molecules into Tubular Nanocomposites
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-04-06 , DOI: 10.1021/jacs.3c00636 Yuting Bi 1 , Caikun Cheng 1 , Zongze Zhang 1 , Rongjuan Liu 1 , Jingjing Wei 1 , Zhijie Yang 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-04-06 , DOI: 10.1021/jacs.3c00636 Yuting Bi 1 , Caikun Cheng 1 , Zongze Zhang 1 , Rongjuan Liu 1 , Jingjing Wei 1 , Zhijie Yang 1
Affiliation
In this work, we show how the kinetics of molecular self-assembly can be coupled with the kinetics of the colloidal self-assembly of inorganic nanoparticles, which in turn drives the formation of several distinct hierarchically assembled tubular nanocomposites with lengths over tens of micrometers. These colloidal nanoparticles primarily serve as “artificial histones,” around which the as-assembled supramolecular fibrils are wound into deeply kinetically trapped single-layered nanotubes, which leads to the formation of tubular nanocomposites that are resistant to supramolecular transformation thermally. Alternatively, when these nanoparticles are aggregated prior to the event of molecular self-assembly, these as-formed nanoparticle “oligomers” would be encapsulated into the thermodynamically favored double-layer supramolecular nanotubes, which enables the non-close-packing of nanoparticles inside the nanotubes and results in the nanoparticle superlattices with an open channel. Furthermore, increasing the amounts of nanoparticles enables the assembly of nanoparticles into pseudohexagonal superlattices at the external surface in a sequential fashion, which ultimately drives the formation of triple-layered hierarchically assembled tubular nanocomposites. Importantly, the sense of helicity transfers from the supramolecular nanotubes to the pseudo nanoparticle superlattices with a chiral vector of (2, 9). Our findings represent a strategy for controlling the hierarchical assembly bridging supramolecular chemistry to the inorganic solids to realize the complexity by design.
中文翻译:
纳米粒子和手性分子的受控分级自组装成管状纳米复合材料
在这项工作中,我们展示了分子自组装的动力学如何与无机纳米粒子的胶体自组装的动力学相结合,这反过来又驱动了几种长度超过几十微米的不同层次组装的管状纳米复合材料的形成。这些胶体纳米颗粒主要用作“人工组蛋白”,组装后的超分子原纤维围绕其缠绕成深度动力学捕获的单层纳米管,从而形成管状纳米复合材料,这些纳米复合材料可抵抗超分子热转变。或者,当这些纳米颗粒在分子自组装事件发生之前聚集时,这些形成的纳米颗粒“低聚物”将被封装到热力学有利的双层超分子纳米管中,这使得纳米管内部的纳米粒子能够非紧密堆积,并导致纳米粒子超晶格具有开放通道。此外,增加纳米颗粒的量可以使纳米颗粒以顺序方式在外表面组装成假六角形超晶格,最终驱动三层分层组装的管状纳米复合材料的形成。重要的是,螺旋感从超分子纳米管转移到具有手性矢量 (2, 9) 的伪纳米粒子超晶格。我们的研究结果代表了一种策略,用于控制将超分子化学与无机固体桥接的分级组装,以通过设计实现复杂性。
更新日期:2023-04-06
中文翻译:
纳米粒子和手性分子的受控分级自组装成管状纳米复合材料
在这项工作中,我们展示了分子自组装的动力学如何与无机纳米粒子的胶体自组装的动力学相结合,这反过来又驱动了几种长度超过几十微米的不同层次组装的管状纳米复合材料的形成。这些胶体纳米颗粒主要用作“人工组蛋白”,组装后的超分子原纤维围绕其缠绕成深度动力学捕获的单层纳米管,从而形成管状纳米复合材料,这些纳米复合材料可抵抗超分子热转变。或者,当这些纳米颗粒在分子自组装事件发生之前聚集时,这些形成的纳米颗粒“低聚物”将被封装到热力学有利的双层超分子纳米管中,这使得纳米管内部的纳米粒子能够非紧密堆积,并导致纳米粒子超晶格具有开放通道。此外,增加纳米颗粒的量可以使纳米颗粒以顺序方式在外表面组装成假六角形超晶格,最终驱动三层分层组装的管状纳米复合材料的形成。重要的是,螺旋感从超分子纳米管转移到具有手性矢量 (2, 9) 的伪纳米粒子超晶格。我们的研究结果代表了一种策略,用于控制将超分子化学与无机固体桥接的分级组装,以通过设计实现复杂性。