当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stabilization of FAPbI3 with Multifunctional Alkali-Functionalized Polymer
Advanced Materials ( IF 27.4 ) Pub Date : 2023-04-06 , DOI: 10.1002/adma.202211619
Chenxu Zhao 1, 2 , Hong Zhang 2, 3 , Masaud Almalki 2 , Jia Xu 1 , Anurag Krishna 2 , Felix T Eickemeyer 2 , Jing Gao 2 , Yu Mao Wu 4 , Shaik M Zakeeruddin 2 , Junhao Chu 3 , Jianxi Yao 1 , Michael Grätzel 2
Advanced Materials ( IF 27.4 ) Pub Date : 2023-04-06 , DOI: 10.1002/adma.202211619
Chenxu Zhao 1, 2 , Hong Zhang 2, 3 , Masaud Almalki 2 , Jia Xu 1 , Anurag Krishna 2 , Felix T Eickemeyer 2 , Jing Gao 2 , Yu Mao Wu 4 , Shaik M Zakeeruddin 2 , Junhao Chu 3 , Jianxi Yao 1 , Michael Grätzel 2
Affiliation
![]() |
The defects located at the interfaces and grain boundaries (GBs) of perovskite films are detrimental to the photovoltaic performance and stability of perovskite solar cells. Manipulating the perovskite crystallization process and tailoring the interfaces with molecular passivators are the main effective strategies to mitigate performance loss and instability. Herein, a new strategy is reported to manipulate the crystallization process of FAPbI3-rich perovskite by incorporating a small amount of alkali-functionalized polymers into the antisolvent solution. The synergic effects of the alkali cations and poly(acrylic acid) anion effectively passivate the defects on the surface and GBs of perovskite films. As a result, the rubidium (Rb)-functionalized poly(acrylic acid) significantly improves the power conversion efficiency of FAPbI3 perovskite solar cells to approaching 25% and reduces the risk of lead ion (Pb2+) leakage continuously via the strong interaction between CO bonds and Pb2+. In addition, the unencapsulated device shows enhanced operational stability, retaining 80% of its initial efficiency after 500 h operation at maximum power point under one-sun illumination.
中文翻译:
多功能碱官能化聚合物稳定 FAPbI3
钙钛矿薄膜界面和晶界(GB)处的缺陷不利于钙钛矿太阳能电池的光伏性能和稳定性。操纵钙钛矿结晶过程和调整分子钝化剂的界面是减轻性能损失和不稳定性的主要有效策略。在此,报道了一种操纵 FAPbI 3结晶过程的新策略-通过将少量碱官能化聚合物加入到反溶剂溶液中来获得富钙钛矿。碱金属阳离子和聚丙烯酸阴离子的协同作用有效钝化钙钛矿薄膜表面和晶界上的缺陷。结果,铷(Rb)功能化的聚丙烯酸显着提高了FAPbI 3钙钛矿太阳能电池的功率转换效率至接近25%,并通过强相互作用持续降低铅离子(Pb 2+ )泄漏的风险CO键和Pb 2+之间。此外,未封装的器件表现出增强的运行稳定性,在一太阳光照下以最大功率点运行 500 小时后,仍保持其初始效率的 80%。
更新日期:2023-04-06
中文翻译:

多功能碱官能化聚合物稳定 FAPbI3
钙钛矿薄膜界面和晶界(GB)处的缺陷不利于钙钛矿太阳能电池的光伏性能和稳定性。操纵钙钛矿结晶过程和调整分子钝化剂的界面是减轻性能损失和不稳定性的主要有效策略。在此,报道了一种操纵 FAPbI 3结晶过程的新策略-通过将少量碱官能化聚合物加入到反溶剂溶液中来获得富钙钛矿。碱金属阳离子和聚丙烯酸阴离子的协同作用有效钝化钙钛矿薄膜表面和晶界上的缺陷。结果,铷(Rb)功能化的聚丙烯酸显着提高了FAPbI 3钙钛矿太阳能电池的功率转换效率至接近25%,并通过强相互作用持续降低铅离子(Pb 2+ )泄漏的风险CO键和Pb 2+之间。此外,未封装的器件表现出增强的运行稳定性,在一太阳光照下以最大功率点运行 500 小时后,仍保持其初始效率的 80%。