当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Across-Layer Sliding Ferroelectricity in 2D Heterolayers
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-04-06 , DOI: 10.1002/adfm.202301105
Liu Yang 1 , Menghao Wu 1
Affiliation  

Although the monolayers of most 2D materials are non-ferroelectric with highly symmetric lattices, symmetry breaking may take place in their bilayers upon some stacking configuration, giving rise to so-called sliding ferroelectricity where the vertical polarizations can be electrically reversed via interlayer translation. However, it is not supposed to appear in systems like graphene bilayer with centro-symmetry at any stacking configuration, and the origin of the recently reported ferroelectricity (Nature 2020, 588, 71) in graphene bilayer intercalated between h-BN remains mysterious. Here, a type of across-layer sliding ferroelectricity that arises from the asymmetry of next-neighbor interlayer couplings is proposed. The first-principles evidence is shown that the vertical polarizations in intercalated centro-symmetric 2D materials like graphene bilayer can be switched via multilayer sliding, which is likely to be the origin of the observed ferroelectric hysteresis. Moreover, such ferroelectricity may exist in a series of other heterolayers with quasi-degenerate polar states, like graphene bilayer or trilayer on BN substrate, or even with a molecule layer on surface where each molecule can store 1-bit data independently, resolving the bottleneck issue of sliding ferroelectricity for high-density data storage.

中文翻译:

二维异质层中的跨层滑动铁电

尽管大多数二维材料的单层是非铁电性的,具有高度对称的晶格,但在某些堆叠配置下,双层材料中可能会发生对称性破缺,从而产生所谓的滑动铁电性,其中垂直极化可以通过层间平移实现电逆转。然而,它不应该出现在任何堆叠结构下具有中心对称性的石墨烯双层系统中,并且最近报道的插入 h-BN 之间的石墨烯双层中铁电性的起源(Nature 2020, 588, 71)仍然是个谜。在这里,提出了一种由相邻层间耦合的不对称性引起的跨层滑动铁电性。第一原理证据表明,插层中心对称二维材料(如石墨烯双层)中的垂直极化可以通过多层滑动进行切换,这可能是观察到的铁电磁滞的起源。此外,这种铁电性可能存在于一系列具有准简并极性态的其他异质层中,例如BN基板上的石墨烯双层或三层,甚至表面有分子层,每个分子可以独立存储1位数据,从而解决了瓶颈用于高密度数据存储的滑动铁电问题。
更新日期:2023-04-06
down
wechat
bug