当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures
Nature Communications ( IF 14.7 ) Pub Date : 2023-04-05 , DOI: 10.1038/s41467-023-37631-5
Jiaqi Zhao 1, 2 , Jinjia Liu 3, 4 , Zhenhua Li 1 , Kaiwen Wang 5 , Run Shi 1 , Pu Wang 1, 2 , Qing Wang 6 , Geoffrey I N Waterhouse 6 , Xiaodong Wen 3, 4 , Tierui Zhang 1, 2
Affiliation  

Photothermal Fischer-Tropsch synthesis represents a promising strategy for converting carbon monoxide into value-added chemicals. High pressures (2-5 MPa) are typically required for efficient C-C coupling reactions and the production of C5+ liquid fuels. Herein, we report a ruthenium-cobalt single atom alloy (Ru1Co-SAA) catalyst derived from a layered-double-hydroxide nanosheet precursor. Under UV-Vis irradiation (1.80 W cm−2), Ru1Co-SAA heats to 200 °C and photo-hydrogenates CO to C5+ liquid fuels at ambient pressures (0.1-0.5 MPa). Single atom Ru sites dramatically enhance the dissociative adsorption of CO, whilst promoting C-C coupling reactions and suppressing over-hydrogenation of CHx* intermediates, resulting in a CO photo-hydrogenation turnover frequency of 0.114 s−1 with 75.8% C5+ selectivity. Owing to the local Ru-Co coordination, highly unsaturated intermediates are generated during C-C coupling reactions, thereby improving the probability of carbon chain growth into C5+ liquid fuels. The findings open new vistas towards C5+ liquid fuels under sunlight at mild pressures.



中文翻译:

用于在环境压力下将 CO 光氢化为液体燃料的钌钴单原子合金

光热费托合成代表了一种将一氧化碳转化为增值化学品的有前途的策略。高效的 CC 偶联反应和 C 5+液体燃料的生产通常需要高压 (2-5 MPa) 。在此,我们报告了一种源自层状双氢氧化物纳米片前体的钌钴单原子合金 (Ru 1 Co-SAA) 催化剂。在 UV-Vis 照射 (1.80 W cm -2 ) 下,Ru 1 Co-SAA 加热至 200 °C 并在环境压力 (0.1-0.5 MPa) 下将 CO 光氢化为 C 5+液体燃料。单原子 Ru 位点可显着增强 CO 的离解吸附,同时促进 CC 偶联反应并抑制 CH x的过度氢化* 中间体,导致 CO 光氢化转换频率为 0.114 s -1,C 5+选择性为 75.8%。由于局部Ru-Co配位,在CC偶联反应过程中产生高度不饱和的中间体,从而提高碳链增长为C 5+液体燃料的可能性。这些发现为在温和压力下阳光下的 C 5+液体燃料开辟了新的前景。

更新日期:2023-04-06
down
wechat
bug