当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial-Catalysis-Enabled Layered and Inorganic-Rich SEI on Hard Carbon Anodes in Ester Electrolytes for Sodium-Ion Batteries
Advanced Materials ( IF 27.4 ) Pub Date : 2023-04-05 , DOI: 10.1002/adma.202300002 Mingquan Liu 1, 2 , Feng Wu 1, 2 , Yuteng Gong 1 , Yu Li 1 , Ying Li 1 , Xin Feng 1 , Qiaojun Li 1 , Chuan Wu 1, 2 , Ying Bai 1
Advanced Materials ( IF 27.4 ) Pub Date : 2023-04-05 , DOI: 10.1002/adma.202300002 Mingquan Liu 1, 2 , Feng Wu 1, 2 , Yuteng Gong 1 , Yu Li 1 , Ying Li 1 , Xin Feng 1 , Qiaojun Li 1 , Chuan Wu 1, 2 , Ying Bai 1
Affiliation
Constructing a homogenous and inorganic-rich solid electrolyte interface (SEI) can efficiently improve the overall sodium-storage performance of hard carbon (HC) anodes. However, the thick and heterogenous SEI derived from conventional ester electrolytes fails to meet the above requirements. Herein, an innovative interfacial catalysis mechanism is proposed to design a favorable SEI in ester electrolytes by reconstructing the surface functionality of HC, of which abundant CO (carbonyl) bonds are accurately and homogenously implanted. The CO (carbonyl) bonds act as active centers that controllably catalyze the preferential reduction of salts and directionally guide SEI growth to form a homogenous, layered, and inorganic-rich SEI. Therefore, excessive solvent decomposition is suppressed, and the interfacial Na+ transfer and structural stability of SEI on HC anodes are greatly promoted, contributing to a comprehensive enhancement in sodium-storage performance. The optimal anodes exhibit an outstanding reversible capacity (379.6 mAh g−1), an ultrahigh initial Coulombic efficiency (93.2%), a largely improved rate capability, and an extremely stable cycling performance with a capacity decay rate of 0.0018% for 10 000 cycles at 5 A g−1. This work provides novel insights into smart regulation of interface chemistry to realize high-performance HC anodes for sodium storage.
中文翻译:
钠离子电池酯电解质硬碳阳极上的界面催化层状和富含无机的 SEI
构建均匀且富含无机物的固体电解质界面(SEI)可以有效提高硬碳(HC)负极的整体储钠性能。然而,源自传统酯电解质的厚且不均匀的SEI无法满足上述要求。在此,提出了一种创新的界面催化机制,通过重构HC的表面功能,在酯电解质中设计有利的SEI,其中丰富的C-O(羰基)键被准确且均匀地植入。C-O(羰基)键作为活性中心,可控地催化盐的优先还原,并定向引导SEI生长,形成均质、层状且富含无机物的SEI。因此,抑制了过度的溶剂分解,大大促进了HC负极上SEI的界面Na +转移和结构稳定性,有助于全面提高储钠性能。优化的负极表现出优异的可逆容量(379.6 mAh g -1)、超高的初始库仑效率(93.2%)、大幅提高的倍率性能以及极其稳定的循环性能,10 000次循环容量衰减率为0.0018%在5 A g -1。这项工作为界面化学的智能调节提供了新颖的见解,以实现用于钠存储的高性能 HC 阳极。
更新日期:2023-04-05
中文翻译:
钠离子电池酯电解质硬碳阳极上的界面催化层状和富含无机的 SEI
构建均匀且富含无机物的固体电解质界面(SEI)可以有效提高硬碳(HC)负极的整体储钠性能。然而,源自传统酯电解质的厚且不均匀的SEI无法满足上述要求。在此,提出了一种创新的界面催化机制,通过重构HC的表面功能,在酯电解质中设计有利的SEI,其中丰富的C-O(羰基)键被准确且均匀地植入。C-O(羰基)键作为活性中心,可控地催化盐的优先还原,并定向引导SEI生长,形成均质、层状且富含无机物的SEI。因此,抑制了过度的溶剂分解,大大促进了HC负极上SEI的界面Na +转移和结构稳定性,有助于全面提高储钠性能。优化的负极表现出优异的可逆容量(379.6 mAh g -1)、超高的初始库仑效率(93.2%)、大幅提高的倍率性能以及极其稳定的循环性能,10 000次循环容量衰减率为0.0018%在5 A g -1。这项工作为界面化学的智能调节提供了新颖的见解,以实现用于钠存储的高性能 HC 阳极。