当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Green Diamond: A Superhard Boron Carbonitride with Bandgap in Green-Light Region and Anisotropic High Carrier Mobilities
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2023-03-31 , DOI: 10.1021/acs.jpclett.3c00480
Jiaqi Lin 1 , Jiaxin Jiang 1 , Jiaqi Zhang 1 , Hongyan Guo 1 , Xiao Cheng Zeng 2 , Zhiwen Zhuo 1 , Ning Lu 1
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2023-03-31 , DOI: 10.1021/acs.jpclett.3c00480
Jiaqi Lin 1 , Jiaxin Jiang 1 , Jiaqi Zhang 1 , Hongyan Guo 1 , Xiao Cheng Zeng 2 , Zhiwen Zhuo 1 , Ning Lu 1
Affiliation
![]() |
The development of new multifunctional superhard materials beyond diamond is a great challenge for materials science and industry application. A new diamond-like boron carbonitride material (BC6N) formed by covalently alternated stacking of two-dimensional BC3 and C3N monolayers is systemically investigated through first-principles method. The electronic structure calculations show that the new structure is a direct bandgap semiconductor with a bandgap of 2.404 eV (HSE06). It exhibits anisotropic high carrier mobility (μLh = 1.88 × 104 cm2 V–1 s–1), varied absorbance in visible light and different regions of UV light, and theoretical Vickers hardness of 81.34 GPa, close to that of diamond. Furthermore, it is easily synthesizable due to its exothermic nature when reacted from the interlayer fusion of the BC3 and C3N monolayers in a bottom-up synthesis strategy. In addition, the properties of 3D-BC6N-I can be tuned by applying strain, changing stacking patterns, and 2D-nanolization. The excellent mechanical, electronic, and optical properties and good synthesizability suggest that the new structure (named as “green diamond”) may find broad applications as a superhard and high-temperature material as well as a semiconductor and optical devices beyond diamond.
中文翻译:
绿金刚石:绿光区带隙和各向异性高载流子迁移率的超硬碳氮化硼
开发超越金刚石的新型多功能超硬材料是材料科学和工业应用面临的巨大挑战。通过第一性原理方法系统地研究了一种由二维BC 3和C 3 N单层共价交替堆叠形成的新型类金刚石碳氮化硼材料(BC 6 N)。电子结构计算表明,新结构是直接带隙半导体,带隙为2.404 eV(HSE06)。它表现出各向异性的高载流子迁移率 (μ Lh = 1.88 × 10 4 cm 2 V –1 s –1), 在可见光和不同区域的紫外光下有不同的吸光度,理论维氏硬度为 81.34 GPa,接近金刚石。此外,当以自下而上的合成策略从 BC 3和 C 3 N 单层的层间融合反应时,由于其放热性质,它很容易合成。此外,3D-BC 6 N-I 的特性可以通过施加应变、改变堆叠模式和 2D 纳米化来调整。优异的机械、电子和光学性能以及良好的可合成性表明,这种新结构(被称为“绿色金刚石”)可能在超硬和高温材料以及金刚石以外的半导体和光学器件方面得到广泛应用。
更新日期:2023-03-31
中文翻译:

绿金刚石:绿光区带隙和各向异性高载流子迁移率的超硬碳氮化硼
开发超越金刚石的新型多功能超硬材料是材料科学和工业应用面临的巨大挑战。通过第一性原理方法系统地研究了一种由二维BC 3和C 3 N单层共价交替堆叠形成的新型类金刚石碳氮化硼材料(BC 6 N)。电子结构计算表明,新结构是直接带隙半导体,带隙为2.404 eV(HSE06)。它表现出各向异性的高载流子迁移率 (μ Lh = 1.88 × 10 4 cm 2 V –1 s –1), 在可见光和不同区域的紫外光下有不同的吸光度,理论维氏硬度为 81.34 GPa,接近金刚石。此外,当以自下而上的合成策略从 BC 3和 C 3 N 单层的层间融合反应时,由于其放热性质,它很容易合成。此外,3D-BC 6 N-I 的特性可以通过施加应变、改变堆叠模式和 2D 纳米化来调整。优异的机械、电子和光学性能以及良好的可合成性表明,这种新结构(被称为“绿色金刚石”)可能在超硬和高温材料以及金刚石以外的半导体和光学器件方面得到广泛应用。