当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interface-engineered ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films
Nature Communications ( IF 14.7 ) Pub Date : 2023-03-30 , DOI: 10.1038/s41467-023-37560-3
Shu Shi 1 , Haolong Xi 2, 3 , Tengfei Cao 4 , Weinan Lin 5 , Zhongran Liu 3 , Jiangzhen Niu 6 , Da Lan 1 , Chenghang Zhou 1 , Jing Cao 7 , Hanxin Su 1 , Tieyang Zhao 1 , Ping Yang 8 , Yao Zhu 9 , Xiaobing Yan 6 , Evgeny Y Tsymbal 4 , He Tian 3, 10 , Jingsheng Chen 1
Affiliation  

Ferroelectric hafnia-based thin films have attracted intense attention due to their compatibility with complementary metal-oxide-semiconductor technology. However, the ferroelectric orthorhombic phase is thermodynamically metastable. Various efforts have been made to stabilize the ferroelectric orthorhombic phase of hafnia-based films such as controlling the growth kinetics and mechanical confinement. Here, we demonstrate a key interface engineering strategy to stabilize and enhance the ferroelectric orthorhombic phase of the Hf0.5Zr0.5O2 thin film by deliberately controlling the termination of the bottom La0.67Sr0.33MnO3 layer. We find that the Hf0.5Zr0.5O2 films on the MnO2-terminated La0.67Sr0.33MnO3 have more ferroelectric orthorhombic phase than those on the LaSrO-terminated La0.67Sr0.33MnO3, while with no wake-up effect. Even though the Hf0.5Zr0.5O2 thickness is as thin as 1.5 nm, the clear ferroelectric orthorhombic (111) orientation is observed on the MnO2 termination. Our transmission electron microscopy characterization and theoretical modelling reveal that reconstruction at the Hf0.5Zr0.5O2/ La0.67Sr0.33MnO3 interface and hole doping of the Hf0.5Zr0.5O2 layer resulting from the MnO2 interface termination are responsible for the stabilization of the metastable ferroelectric phase of Hf0.5Zr0.5O2. We anticipate that these results will inspire further studies of interface-engineered hafnia-based systems.



中文翻译:

外延 Hf0.5Zr0.5O2 薄膜的界面工程铁电性

铁电二氧化铪基薄膜因其与互补金属氧化物半导体技术的相容性而备受关注。然而,铁电正交相是热力学亚稳态的。已经做出各种努力来稳定二氧化铪基薄膜的铁电正交相,例如控制生长动力学和机械限制。在这里,我们展示了一种关键的界面工程策略,通过有意控制底部 La 0.67 Sr 0.33 MnO 3层的终止来稳定和增强 Hf 0.5 Zr 0.5 O 2薄膜的铁电正交相。我们发现 Hf 0.5 ZrMnO 2封端的La 0.67 Sr 0.33 MnO 3上的0.5 O 2薄膜比LaSrO封端的La 0.67 Sr 0.33 MnO 3上的薄膜具有更多的铁电正交相,但没有唤醒效应。即使 Hf 0.5 Zr 0.5 O 2厚度薄至 1.5 nm,在 MnO 2终端上仍观察到清晰的铁电斜方晶系 (111) 取向。我们的透射电子显微镜表征和理论建模揭示了在 Hf 0.5 Zr 0.5 O 2 处的重建/La 0.67 Sr 0.33 MnO 3界面和由MnO 2界面终止产生的Hf 0.5 Zr 0.5 O 2层的空穴掺杂是Hf 0.5 Zr 0.5 O 2 亚稳态铁电相稳定的原因。我们预计这些结果将激发对界面工程的基于氧化铪的系统的进一步研究。

更新日期:2023-03-31
down
wechat
bug