当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Colloidal-ALD-Grown Metal Oxide Shells Enable the Synthesis of Photoactive Ligand/Nanocrystal Composite Materials
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-03-30 , DOI: 10.1021/jacs.3c01439 Philippe B Green 1 , Ona Segura Lecina 1 , Petru P Albertini 1 , Anna Loiudice 1 , Raffaella Buonsanti 1
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-03-30 , DOI: 10.1021/jacs.3c01439 Philippe B Green 1 , Ona Segura Lecina 1 , Petru P Albertini 1 , Anna Loiudice 1 , Raffaella Buonsanti 1
Affiliation
Colloidal nanocrystals (NCs) are ideal materials for a variety of applications and devices, which span from catalysis and optoelectronics to biological imaging. Organic chromophores are often combined with NCs as photoactive ligands to expand the functionality of NCs or to achieve optimal device performance. The most common methodology to introduce these chromophores involves ligand exchange procedures. Despite their ubiquitous nature, ligand exchanges suffer from a few limitations, which include reversible binding, restricted access to binding sites, and the need for purification of the samples, which can result in loss of colloidal stability. Herein, we propose a methodology to bypass these inherent issues of ligand exchange through the growth of an amorphous alumina shell by colloidal atomic layer deposition (c-ALD). We demonstrate that c-ALD creates colloidally stable composite materials, which comprise NCs and organic chromophores as photoactive ligands, by trapping the chromophores around the NC core. As representative examples, we functionalize semiconductor NCs, which include PbS, CsPbBr3, CuInS2, Cu2–xX, and lanthanide-based upconverting NCs, with polyaromatic hydrocarbons (PAH) ligands. Finally, we prove that triplet energy transfer occurs through the shell and we realize the assembly of a triplet exciton funnel structure, which cannot be obtained via conventional ligand exchange procedures. The formation of these organic/inorganic hybrid shells promises to synergistically boost catalytic and multiexcitonic processes while endowing enhanced stability to the NC core.
中文翻译:
胶体 ALD 生长的金属氧化物壳使光活性配体/纳米晶体复合材料的合成成为可能
胶体纳米晶体 (NC) 是适用于从催化和光电子学到生物成像等各种应用和设备的理想材料。有机发色团通常与 NC 作为光活性配体结合,以扩展 NC 的功能或实现最佳的器件性能。引入这些发色团的最常见方法涉及配体交换程序。尽管它们无处不在,但配体交换存在一些局限性,包括可逆结合、结合位点的访问受限以及样品纯化的需要,这可能导致胶体稳定性丧失。在此,我们提出了一种方法,通过胶体原子层沉积 (c-ALD) 生长无定形氧化铝壳来绕过配体交换的这些固有问题。我们证明,c-ALD 通过将发色团捕获在 NC 核心周围,从而产生胶体稳定的复合材料,其中包含 NC 和有机发色团作为光活性配体。作为代表性示例,我们将半导体 NC 功能化,包括 PbS、CsPbBr3、CuInS 2、Cu 2– x X 和基于镧系元素的上转换 NC,具有多环芳烃 (PAH) 配体。最后,我们证明了三重态能量转移是通过壳发生的,我们实现了三重态激子漏斗结构的组装,这是通过常规配体交换程序无法获得的。这些有机/无机杂化壳的形成有望协同促进催化和多激子过程,同时赋予 NC 核心更高的稳定性。
更新日期:2023-03-30
中文翻译:
胶体 ALD 生长的金属氧化物壳使光活性配体/纳米晶体复合材料的合成成为可能
胶体纳米晶体 (NC) 是适用于从催化和光电子学到生物成像等各种应用和设备的理想材料。有机发色团通常与 NC 作为光活性配体结合,以扩展 NC 的功能或实现最佳的器件性能。引入这些发色团的最常见方法涉及配体交换程序。尽管它们无处不在,但配体交换存在一些局限性,包括可逆结合、结合位点的访问受限以及样品纯化的需要,这可能导致胶体稳定性丧失。在此,我们提出了一种方法,通过胶体原子层沉积 (c-ALD) 生长无定形氧化铝壳来绕过配体交换的这些固有问题。我们证明,c-ALD 通过将发色团捕获在 NC 核心周围,从而产生胶体稳定的复合材料,其中包含 NC 和有机发色团作为光活性配体。作为代表性示例,我们将半导体 NC 功能化,包括 PbS、CsPbBr3、CuInS 2、Cu 2– x X 和基于镧系元素的上转换 NC,具有多环芳烃 (PAH) 配体。最后,我们证明了三重态能量转移是通过壳发生的,我们实现了三重态激子漏斗结构的组装,这是通过常规配体交换程序无法获得的。这些有机/无机杂化壳的形成有望协同促进催化和多激子过程,同时赋予 NC 核心更高的稳定性。