当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous hydrodynamic cavitation and glow plasma discharge for the degradation of metronidazole in drinking water
Ultrasonics Sonochemistry ( IF 8.7 ) Pub Date : 2023-03-29 , DOI: 10.1016/j.ultsonch.2023.106388
Thiago Castanho Pereira 1 , Erico Marlon Moraes Flores 1 , Anna V Abramova 2 , Federico Verdini 3 , Emanuela Calcio Gaudino 3 , Fabio Bucciol 3 , Giancarlo Cravotto 3
Affiliation  

In this study, a novel hydrodynamic cavitation unit combined with a glow plasma discharge system (HC-GPD) was proposed for the degradation of pharmaceutical compounds in drinking water. Metronidazole (MNZ), a commonly used broad-spectrum antibiotic, was selected to demonstrate the potential of the proposed system. Cavitation bubbles generated by hydrodynamic cavitation (HC) can provide a pathway for charge conduction during glow plasma discharge (GPD). The synergistic effect between HC and GPD promotes the production of hydroxyl radicals, emission of UV light, and shock waves for MNZ degradation. Sonochemical dosimetry provided information on the enhanced formation of hydroxyl radicals during glow plasma discharge compared to hydrodynamic cavitation alone. Experimental results showed a MNZ degradation of 14% in 15 min for the HC alone (solution initially containing 300 × 10 mol L MNZ). In experiments with the HC-GPD system, MNZ degradation of 90% in 15 min was detected. No significant differences were observed in MNZ degradation in acidic and alkaline solutions. MNZ degradation was also studied in the presence of inorganic anions. Experimental results showed that the system is suitable for the treatment of solutions with conductivity up to 1500 × 10 S cm. The results of sonochemical dosimetry showed the formation of oxidant species of 0.15 × 10 mol HO L in the HC system after 15 min. For the HC-GPD system, the concentration of oxidant species after 15 min reached 13 × 10 molHOL. Based on these results, the potential of combining HC and GPD systems for water treatment was demonstrated. The present work provided useful information on the synergistic effect between hydrodynamic cavitation and glow plasma discharge and their application for the degradation of antibiotics in drinking water.

中文翻译:


同时进行水动力空化和辉光等离子体放电降解饮用水中的甲硝唑



在这项研究中,提出了一种与辉光等离子体放电系统(HC-GPD)相结合的新型水力空化装置,用于降解饮用水中的药物化合物。选择甲硝唑(MNZ)这种常用的广谱抗生素来证明该系统的潜力。水动力空化 (HC) 产生的空化气泡可以为辉光等离子体放电 (GPD) 期间的电荷传导提供途径。 HC 和 GPD 之间的协同效应促进羟基自由基的产生、紫外线的发射和 MNZ 降解的冲击波。声化学剂量测定提供了与单独的水动力空化相比,辉光等离子体放电期间羟基自由基形成增强的信息。实验结果表明,单独使用 HC(溶液最初含有 300 × 10 mol·L MNZ)时,MNZ 在 15 分钟内降解了 14%。在 HC-GPD 系统的实验中,检测到 MNZ 在 15 分钟内降解了 90%。 MNZ 在酸性和碱性溶液中的降解没有观察到显着差异。还研究了无机阴离子存在下 MNZ 的降解。实验结果表明,该系统适合处理电导率高达1500×10Scm的溶液。声化学剂量测定结果显示,15 分钟后,HC 系统中形成了 0.15 × 10 mol H2O L 的氧化剂。对于 HC-GPD 系统,15 分钟后氧化剂浓度达到 13 × 10 molHOL。基于这些结果,证明了结合 HC 和 GPD 系统进行水处理的潜力。 目前的工作提供了关于水动力空化和辉光等离子体放电之间的协同效应及其在饮用水中抗生素降解中的应用的有用信息。
更新日期:2023-03-29
down
wechat
bug