Nature Communications ( IF 14.7 ) Pub Date : 2023-03-29 , DOI: 10.1038/s41467-023-37358-3 Xiaoqing Yan 1 , Mengyang Xia 1 , Hanxuan Liu 1 , Bin Zhang 2 , Chunran Chang 1 , Lianzhou Wang 3 , Guidong Yang 1
Photocatalysis offers an attractive strategy to upgrade H2O to renewable fuel H2. However, current photocatalytic hydrogen production technology often relies on additional sacrificial agents and noble metal cocatalysts, and there are limited photocatalysts possessing overall water splitting performance on their own. Here, we successfully construct an efficient catalytic system to realize overall water splitting, where hole-rich nickel phosphides (Ni2P) with polymeric carbon-oxygen semiconductor (PCOS) is the site for oxygen generation and electron-rich Ni2P with nickel sulfide (NiS) serves as the other site for producing H2. The electron-hole rich Ni2P based photocatalyst exhibits fast kinetics and a low thermodynamic energy barrier for overall water splitting with stoichiometric 2:1 hydrogen to oxygen ratio (150.7 μmol h−1 H2 and 70.2 μmol h−1 O2 produced per 100 mg photocatalyst) in a neutral solution. Density functional theory calculations show that the co-loading in Ni2P and its hybridization with PCOS or NiS can effectively regulate the electronic structures of the surface active sites, alter the reaction pathway, reduce the reaction energy barrier, boost the overall water splitting activity. In comparison with reported literatures, such photocatalyst represents the excellent performance among all reported transition-metal oxides and/or transition-metal sulfides and is even superior to noble metal catalyst.
中文翻译:
用于高效光催化全分解水的富电子空穴双位点镍催化剂
光催化提供了一种将 H 2 O 升级为可再生燃料 H 2的有吸引力的策略。然而,目前的光催化制氢技术往往依赖于额外的牺牲剂和贵金属助催化剂,单独具备全面水分解性能的光催化剂有限。在这里,我们成功地构建了一个高效的催化系统来实现全分解水,其中富含空穴的镍磷化物 (Ni 2 P) 和聚合碳氧半导体 (PCOS) 是氧气生成的场所,富电子的 Ni 2 P 和镍硫化物(NiS)作为产生H 2的另一个场所。富电子空穴Ni 2基于 P 的光催化剂在中性条件下以化学计量的 2:1 氢氧比(每 100 mg 光催化剂产生150.7 μmol h -1 H 2和 70.2 μmol h -1 O 2)对整体水分解表现出快速动力学和低热力学能垒解决方案。密度泛函理论计算表明,Ni 2中的共负载P及其与PCOS或NiS的杂化可以有效调节表面活性位点的电子结构,改变反应途径,降低反应能垒,提高整体水分解活性。与已报道的文献相比,该光催化剂在所有已报道的过渡金属氧化物和/或过渡金属硫化物中表现出优异的性能,甚至优于贵金属催化剂。