当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Expanded waste glass/methyl palmitate/carbon nanofibers as effective shape stabilized and thermal enhanced composite phase change material for thermal energy storage
Journal of Energy Storage ( IF 8.9 ) Pub Date : 2023-03-27 , DOI: 10.1016/j.est.2023.107205
P. Singh , R.K. Sharma , Gökhan Hekimoğlu , Ahmet Sarı , Osman Gencel , V.V. Tyagi

A prominent choice for phase change materials (PCMs) for passive solar thermoregulation is fatty acids because of their many beneficial characteristics for latent heat thermal energy storage (LHTES). Their low thermal conductivity and additional storage container requirements to prevent leaks during heating time, however, severely restrict their range of applications. In order to address these issues with methyl palmitate (MP) as a phase transition material, it was first doped with carbon nanofibers (CNFs) after being incorporated with expanded waste glass (EWG) using the melting/blending procedure. The SEM, XRD, FTIR, DSC, and TGA techniques were used to investigate the thermal and chemical performance of composite phase change materials (CPCMs). The leak-proof composite phase change materials (LPCPCM) and thermal enhanced shape stabilized composite phase change materials (TE-SSCPCMs) had latent energy between 96.1 and 96.7 J/g and melting temperatures between 26.61 and 27.12 °C. Doping 2, 4, and 8 wt% of CNFs into CPCMs, conductivity got enhanced by 29.2, 62.5, and 112.5 % respectively, due to which, the TE-SSCPCM's charging/discharging periods were significantly shortened without changing their LHTES properties much. Further, evidence came from the thermal cycling test, TGA results, and the impressive thermal reliability, LHTES cycle performance, and chemical compatibility of all manufactured composites.



中文翻译:

膨胀废玻璃/棕榈酸甲酯/碳纳米纤维作为有效的形状稳定和热增强复合相变材料用于热能储存

用于被动太阳能温度调节的相变材料 (PCM) 的一个突出选择是脂肪酸,因为它们具有许多对潜热热能储存 (LHTES) 有益的特性。然而,它们的低导热性和防止加热期间泄漏的额外存储容器要求严重限制了它们的应用范围。为了解决棕榈酸甲酯 (MP) 作为相变材料的这些问题,首先使用熔化/混合程序将其与膨胀废玻璃 (EWG) 结合后掺杂碳纳米纤维 (CNF)。SEM、XRD、FTIR、DSC 和 TGA 技术用于研究复合相变材料 (CPCM) 的热性能和化学性能。防漏复合相变材料 (LPPCCM) 和热增强形状稳定复合相变材料 (TE-SSCPCMs) 的潜能在 96.1 至 96.7 J/g 之间,熔化温度在 26.61 至 27.12 °C 之间。将 2%、4% 和 8% 的 CNF 掺杂到 CPCM 中,电导率分别提高了 29.2%、62.5% 和 112.5%,因此,TE-SSCPCM 的充电/放电周期显着缩短,而其 LHTES 特性没有太大变化。此外,证据来自所有制造的复合材料的热循环测试、TGA 结果以及令人印象深刻的热可靠性、LHTES 循环性能和化学相容性。电导率分别提高了 29.2%、62.5% 和 112.5%,因此,TE-SSCPCM 的充电/放电周期显着缩短,而其 LHTES 特性没有太大变化。此外,证据来自所有制造的复合材料的热循环测试、TGA 结果以及令人印象深刻的热可靠性、LHTES 循环性能和化学相容性。电导率分别提高了 29.2%、62.5% 和 112.5%,因此,TE-SSCPCM 的充电/放电周期显着缩短,而其 LHTES 特性没有太大变化。此外,证据来自所有制造的复合材料的热循环测试、TGA 结果以及令人印象深刻的热可靠性、LHTES 循环性能和化学相容性。

更新日期:2023-03-29
down
wechat
bug