当前位置: X-MOL 学术Sens. Actuators A Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An induction-coil magnetometer for mid-plane measurements in spectrometer magnets
Sensors and Actuators A: Physical ( IF 4.1 ) Pub Date : 2023-03-28 , DOI: 10.1016/j.sna.2023.114334
Melvin Liebsch , Stephan Russenschuck , Jens Kaeske

Induction-coil magnetometers are among the most common devices for measuring both static and transient magnetic fields in accelerator and spectrometer magnets. Recent developments have included an induction-coil array mounted on a sledge, which is translated on the mid-plane of normal-conducting spectrometer magnets. This device, subsequently denoted as the moving fluxmeter, is used to derive the field homogeneity in the magnet center, as well as the gradients in the fringe-field areas. Induction coils capture the magnetic flux through the surface that is traced out by the coil windings. A deconvolution is necessary to recover the flux density from the measured voltage signal. The key idea of this article is to combine the advantages of small and large induction coils to optimize the sensitivity function in the frequency domain. In this way, an information loss due to ”blind-eye” frequencies can be avoided and signals can be deconvoluted with ease. While the coil design and metrological characterization is inspired by the theory of the rotating-coil magnetometer, the sensitivity function needs to be expressed in terms of longitudinal spatial instead of angular frequencies. Consequentially we are working with Fourier transforms, instead of Fourier series of periodic signals. The coil sensitivity function, i.e., the convolution kernel, is optimized in the relevant frequency range by the precise layout of the coil-turns on a printed circuit board (PCB). Measurement results are presented that validate the concept and prove its advantages with respect to the classical coil design.



中文翻译:

用于光谱仪磁体中平面测量的感应线圈磁力计

感应线圈磁力计是用于测量加速器和光谱仪磁体中的静态和瞬态磁场的最常用设备之一。最近的发展包括安装在雪橇上的感应线圈阵列,它在正常传导的光谱仪磁铁的中平面上平移。该设备随后表示为移动磁通计,用于推导磁体中心的场均匀性以及边缘场区域的梯度。感应线圈捕获通过线圈绕组描绘出的表面的磁通量。解卷积对于从测得的电压信号中恢复通量密度是必要的。本文的核心思想是结合小型和大型感应线圈的优点,优化频域中的灵敏度函数。这样,可以避免由于“盲眼”频率而导致的信息丢失,并且可以轻松地对信号进行解卷积。虽然线圈设计和计量表征受到旋转线圈磁力计理论的启发,但灵敏度函数需要用纵向空间而不是角频率来表示。因此,我们正在使用傅立叶变换,而不是周期信号的傅立叶系列。线圈灵敏度函数,即卷积核,通过印刷电路板 (PCB) 上线圈匝数的精确布局在相关频率范围内进行优化。提供的测量结果验证了概念并证明了其相对于经典线圈设计的优势。虽然线圈设计和计量表征受到旋转线圈磁力计理论的启发,但灵敏度函数需要用纵向空间而不是角频率来表示。因此,我们正在使用傅立叶变换,而不是周期信号的傅立叶系列。线圈灵敏度函数,即卷积核,通过印刷电路板 (PCB) 上线圈匝数的精确布局在相关频率范围内进行优化。提供的测量结果验证了概念并证明了其相对于经典线圈设计的优势。虽然线圈设计和计量表征受到旋转线圈磁力计理论的启发,但灵敏度函数需要用纵向空间而不是角频率来表示。因此,我们正在使用傅立叶变换,而不是周期信号的傅立叶系列。线圈灵敏度函数,即卷积核,通过印刷电路板 (PCB) 上线圈匝数的精确布局在相关频率范围内进行优化。提供的测量结果验证了概念并证明了其相对于经典线圈设计的优势。因此,我们正在使用傅立叶变换,而不是周期信号的傅立叶系列。线圈灵敏度函数,即卷积核,通过印刷电路板 (PCB) 上线圈匝数的精确布局在相关频率范围内进行优化。提供的测量结果验证了概念并证明了其相对于经典线圈设计的优势。因此,我们正在使用傅立叶变换,而不是周期信号的傅立叶系列。线圈灵敏度函数,即卷积核,通过印刷电路板 (PCB) 上线圈匝数的精确布局在相关频率范围内进行优化。提供的测量结果验证了概念并证明了其相对于经典线圈设计的优势。

更新日期:2023-03-31
down
wechat
bug