当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts
ACS Catalysis ( IF 11.3 ) Pub Date : 2023-03-27 , DOI: 10.1021/acscatal.2c05998
Jonathan Quinson 1, 2 , Sebastian Kunz 3, 4 , Matthias Arenz 5
ACS Catalysis ( IF 11.3 ) Pub Date : 2023-03-27 , DOI: 10.1021/acscatal.2c05998
Jonathan Quinson 1, 2 , Sebastian Kunz 3, 4 , Matthias Arenz 5
Affiliation
![]() |
Colloidal syntheses of nanomaterials offer multiple benefits to study, understand, and optimize unsupported and supported catalysts. In particular, colloidal syntheses are relevant to the synthesis of (precious) metal nanoparticles. By separating the synthesis of the active phase, i.e., the nanoparticles, from supporting steps, a deeper knowledge and rational control of the properties of supported catalysts is gained. The effect(s) of the size, shape, and composition of the nanoparticle, the nature of the support, or the metal loading on a support can be studied in more systematic ways. The fundamental knowledge gained paves the way for catalyst optimization by tuning the catalyst activity, selectivity, and stability. However, most colloidal syntheses require the use of additives or surfactants, which are detrimental to most catalytic reactions because they typically block catalyst active sites. Surfactant removal is therefore often required, which adds complexity to the synthesis and the analysis of the obtained results. Developing surfactant-free strategies to obtain stable colloidal nanoparticles is therefore a rising field of research that is here reviewed. A focus is given to laser synthesis and processing of colloids-, solution plasma process-, N,N-dimethylformamide-, polyol-, and recently reported monoalcohol-based syntheses. The relevance of these synthetic approaches for catalysis is detailed with a focus on heterogeneous catalysis and electrocatalysis.
中文翻译:
用于改进催化剂的贵金属纳米粒子的无表面活性剂胶体合成
纳米材料的胶体合成为研究、理解和优化无负载和负载催化剂提供了多种好处。特别是,胶体合成与(贵)金属纳米粒子的合成有关。通过将活性相(即纳米颗粒)的合成与支撑步骤分开,可以获得对负载型催化剂性能的更深入了解和合理控制。可以以更系统的方式研究纳米颗粒的大小、形状和组成、载体的性质或载体上的金属负载的影响。获得的基础知识为通过调整催化剂活性、选择性和稳定性来优化催化剂铺平了道路。然而,大多数胶体合成需要使用添加剂或表面活性剂,这对大多数催化反应都是有害的,因为它们通常会阻塞催化剂的活性位点。因此通常需要去除表面活性剂,这增加了所得结果的合成和分析的复杂性。因此,开发不含表面活性剂的策略以获得稳定的胶体纳米粒子是一个新兴的研究领域,本文对此进行了综述。重点是胶体的激光合成和加工,溶液等离子体加工,N、N-二甲基甲酰胺-、多元醇-和最近报道的基于单醇的合成。详细介绍了这些合成方法与催化的相关性,重点是多相催化和电催化。
更新日期:2023-03-27
中文翻译:

用于改进催化剂的贵金属纳米粒子的无表面活性剂胶体合成
纳米材料的胶体合成为研究、理解和优化无负载和负载催化剂提供了多种好处。特别是,胶体合成与(贵)金属纳米粒子的合成有关。通过将活性相(即纳米颗粒)的合成与支撑步骤分开,可以获得对负载型催化剂性能的更深入了解和合理控制。可以以更系统的方式研究纳米颗粒的大小、形状和组成、载体的性质或载体上的金属负载的影响。获得的基础知识为通过调整催化剂活性、选择性和稳定性来优化催化剂铺平了道路。然而,大多数胶体合成需要使用添加剂或表面活性剂,这对大多数催化反应都是有害的,因为它们通常会阻塞催化剂的活性位点。因此通常需要去除表面活性剂,这增加了所得结果的合成和分析的复杂性。因此,开发不含表面活性剂的策略以获得稳定的胶体纳米粒子是一个新兴的研究领域,本文对此进行了综述。重点是胶体的激光合成和加工,溶液等离子体加工,N、N-二甲基甲酰胺-、多元醇-和最近报道的基于单醇的合成。详细介绍了这些合成方法与催化的相关性,重点是多相催化和电催化。