当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Terahertz Silicon Metagratings: High-Efficiency Dispersive Beam Manipulation above Diffraction Cone
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2023-03-27 , DOI: 10.1002/lpor.202200975
Ruisheng Yang 1, 2 , Yuancheng Fan 1, 3 , Wei Zhu 4 , Chuanjie Hu 2 , Songnan Chen 1 , Heng Wei 2 , Weijin Chen 2 , C. T. Chan 3 , Qian Zhao 5 , Ji Zhou 6 , Fuli Zhang 1 , Cheng‐Wei Qiu 2
Affiliation  

Optical wavefront engineering is essential for the development of next-generation integrated photonic devices. It is used for reflecting terahertz waves in a predesigned nonspecular direction with near-unitary efficiency, which is a longstanding challenge for high-performance functional devices. Recently, metagratings have offered an efficient solution for beam steering at large angles without the need for a discretization phase or impedance profile. Here, all-dielectric metagratings fabricated using a silicon cuboid complex lattice are proposed and demonstrated experimentally to achieve anomalous terahertz beam reflections above the diffraction cone with unitary diffraction efficiency. For the bipartite metagrating system, a single dispersive scatterer per unit is effective for achieving broadband beam steering because of Brillouin zone folding, and another perturbative synergetic scatterer is introduced to slightly tailor the array coupling and improve the performance. High-efficiency beam steering, including both retroreflection under oblique incidence and one-way diffraction under normal incidence, can be achieved by breaking structural symmetry and coherently suppressing unnecessary radiation channels. Moreover, silicon metagratings with spatially dispersive response features show perfect anomalous reflection operation in the broadband region, which is promising for leveraging terahertz spatially separated devices.

中文翻译:

太赫兹硅超光栅:衍射锥上方的高效色散光束操纵

光波前工程对于下一代集成光子器件的开发至关重要。它用于以接近单一的效率沿预先设计的非镜面方向反射太赫兹波,这是高性能功能器件长期面临的挑战。最近,元光栅为大角度光束控制提供了一种有效的解决方案,无需离散化相位或阻抗分布。在这里,提出并通过实验证明了使用硅长方体复合晶格制造的全电介质元光栅,以实现具有单一衍射效率的衍射锥上方的反常太赫兹光束反射。对于二分元光栅系统,由于布里渊区折叠,每单元单个色散散射体可有效实现宽带光束控制,引入另一个微扰协同散射体来稍微调整阵列耦合并提高性能。通过打破结构对称性和相干抑制不必要的辐射通道,可以实现高效光束控制,包括斜入射下的回射和正入射下的单向衍射。此外,具有空间色散响应特征的硅超光栅在宽带区域表现出完美的反常反射操作,这对于利用太赫兹空间分离的器件很有希望。可以通过打破结构对称性并相干抑制不必要的辐射通道来实现。此外,具有空间色散响应特征的硅超光栅在宽带区域表现出完美的反常反射操作,这对于利用太赫兹空间分离的器件很有希望。可以通过打破结构对称性并相干抑制不必要的辐射通道来实现。此外,具有空间色散响应特征的硅超光栅在宽带区域表现出完美的反常反射操作,这对于利用太赫兹空间分离的器件很有希望。
更新日期:2023-03-27
down
wechat
bug