Nature Communications ( IF 14.7 ) Pub Date : 2023-03-27 , DOI: 10.1038/s41467-023-37479-9 Bin Zhu 1 , Shanshan He 1 , Yan Yang 1 , Songwei Li 2 , Cher Hon Lau 3 , Shaomin Liu 4 , Lu Shao 1
Advances in membrane technologies are significant for mitigating global climate change because of their low cost and easy operation. Although mixed-matrix membranes (MMMs) obtained via the combination of metal-organic frameworks (MOFs) and a polymer matrix are promising for energy-efficient gas separation, the achievement of a desirable match between polymers and MOFs for the development of advanced MMMs is challenging, especially when emerging highly permeable materials such as polymers of intrinsic microporosity (PIMs) are deployed. Here, we report a molecular soldering strategy featuring multifunctional polyphenols in tailored polymer chains, well-designed hollow MOF structures, and defect-free interfaces. The exceptional adhesion nature of polyphenols results in dense packing and visible stiffness of PIM-1 chains with strengthened selectivity. The architecture of the hollow MOFs leads to free mass transfer and substantially improves permeability. These structural advantages act synergistically to break the permeability-selectivity trade-off limit in MMMs and surpass the conventional upper bound. This polyphenol molecular soldering method has been validated for various polymers, providing a universal pathway to prepare advanced MMMs with desirable performance for diverse applications beyond carbon capture.
中文翻译:
通过多面多酚介导的焊接促进膜碳捕获
膜技术的进步对于缓解全球气候变化具有重要意义,因为它们成本低且易于操作。尽管通过金属有机骨架 (MOF) 和聚合物基质的组合获得的混合基质膜 (MMM) 有望实现高能效气体分离,但要实现聚合物和 MOF 之间的理想匹配以开发先进的 MMM具有挑战性,尤其是在部署新兴的高渗透性材料(例如固有微孔聚合物 (PIM))时。在这里,我们报告了一种分子焊接策略,其特点是定制聚合物链中的多功能多酚、精心设计的中空 MOF 结构和无缺陷界面。多酚的特殊粘附性导致 PIM-1 链的密集堆积和可见刚度,选择性增强。中空 MOF 的结构导致自由传质并显着提高渗透性。这些结构优势协同作用,打破了 MMM 中渗透率-选择性权衡的限制,超越了传统的上限。这种多酚分子焊接方法已针对各种聚合物进行了验证,为制备具有理想性能的高级 MMM 提供了一种通用途径,适用于碳捕获以外的各种应用。